TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
15 Videos
38 Assessment Questions
57 Journal Articles
76 Other Resources
Videos: First 3 results
Endothermic Reaction  
Solid barium hydroxide octahydrate (Ba(OH)2*8H2O) and ammonium thiocyanate (NH4SCN) are mixed in a beaker, which is then placed on a few drops of water on a small board. The reaction that occurs is highly endothermic.
Calorimetry / Thermochemistry |
Thermodynamics
Sulfuric Acid into Water and Ice  
When sulfuric acid is mixed with water the temperature rises. When sulfuric acid is added to ice, the temperature rises at first, but as the ice melts, the temperature falls.
Calorimetry / Thermochemistry
Heat Conduction by Diamond  
Diamond is shown to conduct heat better than aluminum.
Physical Properties |
Calorimetry / Thermochemistry
View all 15 results
Assessment Questions: First 3 results
Thermochemistry : HeatCapacityGraph (6 Variations)

Consider the graph above. Which of these substances has the highest specific heat capacity?


Calorimetry / Thermochemistry |
Heat Capacity
Thermochemistry : HeatCapacitySolLiq (4 Variations)
The Table below lists the specific heat capacities of several metals and liquids.

Substance Specific Heat Capacity
J/(g.oC)
Substance Specific Heat Capacity
J/(g.oC)
Al 0.902 H2O 4.18
Fe 0.451 C2H5OH 2.46
Cu 0.383 CCl4 0.861
Au 0.128 CCl2F2 0.598

In an experiment, 50 g of a metal was heated to 100oC and placed in 200 g of a liquid at 25oC. Which of the following combinations of metal and liquid will produce the largest temperature increase in the liquid? (Assume that there is no transfer of energy to the surroundings.)


Calorimetry / Thermochemistry |
Heat Capacity
Thermochemistry : HeatCapacityLiq (4 Variations)
100 g of water (c=4.184 J/g.oC), 100 g of ethanol (c=2.46 J/g.oC), 100 g of carbon tetrachloride (c=0.861 J/g.oC), and 100 g of ethylene glycol (c=2.42 J/g.oC) at 50oC were each placed into a separate coffee cup calorimeter and the temperature recorded. The temperature of the surroundings was 20oC. After one hour the temperature of which substance would have changed by the largest amount? Assume that the rate of heat transfer from the coffee cup to the surroundings was the same in each case.
Calorimetry / Thermochemistry |
Heat Capacity
View all 38 results
Journal Articles: First 3 results.
Pedagogies:
Physical Chemistry: Thermodynamics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 694 pp. ISBN: 978-0815340911 (paper). $49.95

Physical Chemistry: Statistical Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 292 pp. ISBN: 978-0815340850 (paper). $44.95

Physical Chemistry: Kinetics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 169 pp. ISBN: 978-0815340898 (paper). $44.95

Physical Chemistry: Quantum Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 481 pp. ISBN: 978-0815340874 (paper). $44.95

  John Krenos
Metiu has created a significant set of volumes on undergraduate physical chemistry. The integration of Mathematica and Mathcad workbooks into the four texts provides instructors with an attractive new option in teaching.
Krenos, John. J. Chem. Educ. 2008, 85, 206.
Quantum Chemistry |
Statistical Mechanics |
Thermodynamics |
Kinetics
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Heat Capacity of Metals and Demonstration of the Law of Dulong and Petit  Ronald P. D'Amelia, Vincent Stracuzzi, and William F. Nirode
The work described herein discusses the use of differential scanning calorimetry in a general chemistry laboratory course to determine the specific heat capacities of metals and introduce the empirical law of Dulong and Petit.
D'Amelia, Ronald P.; Stracuzzi, Vincent; Nirode, William F. J. Chem. Educ. 2008, 85, 109.
Calorimetry / Thermochemistry |
Heat Capacity |
Instrumental Methods |
Thermal Analysis
A Simple Calorimetric Experiment That Highlights Aspects of Global Heat Retention and Global Warming  Joel D. Burley and Harold S. Johnston
In this laboratory experiment, general chemistry students verify that heat is consumed in the melting of ice, with no increase in temperature until all the ice has melted. The fundamental calorimetric principles demonstrated by the lab results are then developed to help students better assess and understand the experimental evidence associated with global warming.
Burley, Joel D.; Johnston, Harold S. J. Chem. Educ. 2007, 84, 1686.
Atmospheric Chemistry |
Calorimetry / Thermochemistry
View all 57 articles
Other Resources: First 3 results
Heat Capacity and Microscopic Changes  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Heat Capacity |
Kinetic-Molecular Theory
Heat Capacities  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Heat Capacity
Original Writings of Joseph Black on the Melting of Ice (ca. 1760)  Ed Vitz
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Thermodynamics |
Calorimetry / Thermochemistry
View all 76 results