TIGER

Journal Articles: 25 results
Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties  Robert M. Hanson, Patrick Riley, Jeff Schwinefus, and Paul J. Fischer
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level.
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J. J. Chem. Educ. 2008, 85, 1142.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics
Freezing Point of Milk: A Natural Way To Understand Colligative Properties  Mercedes Novo, Belén Reija, and Wajih Al-Soufi
Presents a laboratory experiment that illustrates the use of freezing point measurements to control milk quality and determine molecular weight.
Novo, Mercedes; Reija, Belén; Al-Soufi, Wajih. J. Chem. Educ. 2007, 84, 1673.
Consumer Chemistry |
Food Science |
Natural Products |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Molar Mass by Freezing Point Depression  Ronald P. D'Amelia, Thomas Franks, and William F. Nirode
The work described herein uses differential scanning calorimetry to determine the molar mass of three unknowns (nonvolatile organic hydrocarbons) by freezing point depression.
D'Amelia, Ronald P.; Franks, Thomas; Nirode, William F. J. Chem. Educ. 2006, 83, 1537.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermal Analysis |
Solutions / Solvents
Sherlock Holmes and the Case of the Raven and the Ambassador's Wife: An Inquiry-Based Murder Mystery  Nathaniel Grove and Stacey Lowery Bretz
In the accompanying investigation, students help Sherlock Holmes solve the poisoning death of Holly Bernard-Schneider, the wife of the German ambassador to England. Hints are placed throughout the story to help students in their choice of experiments. These experiments include flame tests, qualitative analysis, molar mass determination using freezing point depression, and identification of crystal shapes. Though intended for use as a culminating activity, the unit can be easily modified to be used as separate modules throughout the course of the year.
Grove, Nathaniel; Bretz, Stacey Lowery. J. Chem. Educ. 2005, 82, 1532.
Crystals / Crystallography |
Qualitative Analysis |
Physical Properties |
Solutions / Solvents |
Student-Centered Learning
A Greener Approach for Measuring Colligative Properties  Sean M. McCarthy and Scott W. Gordon-Wylie
As a first step towards the greening of instructional laboratories, we present a new greener version of a laboratory procedure designed to measure colligative properties. The greener procedure substitutes the nontoxic, noncarcinogenic compounds stearic, myristic, lauric, and palmitic acids for the less benign aromatic compounds p-dichlorobenzene, benzil, biphenyl, naphthalene, and nitrotoluene. Achieving educational goals without the concomitant generation of chlorinated and aromatic wastes is shown here to be both possible and practical.
McCarthy, Sean M.; Gordon-Wylie, Scott W. J. Chem. Educ. 2005, 82, 116.
Green Chemistry |
Solutions / Solvents |
Fatty Acids
An After-Dinner Trick   JCE Editorial Staff
Using freezing-point depression to lift an ice cube out of a glass of water with a thread.
JCE Editorial Staff. J. Chem. Educ. 2002, 79, 480A.
Aqueous Solution Chemistry |
Consumer Chemistry |
Phases / Phase Transitions / Diagrams
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
Is Salt Melting When It Dissolves in Water?  Alan Goodwin
Analysis of the chemical meaning of the terms melting and dissolving.
Goodwin, Alan. J. Chem. Educ. 2002, 79, 393.
Liquids |
Solids |
Phases / Phase Transitions / Diagrams
On the Importance of Ideality  Rubin Battino, Scott E. Wood, and Arthur G. Williamson
Analysis of the utility of ideality in gaseous phenomena, solutions, and the thermodynamic concept of reversibility.
Battino, Rubin; Wood, Scott E.; Williamson, Arthur G. J. Chem. Educ. 2001, 78, 1364.
Thermodynamics |
Gases |
Solutions / Solvents
Demonstrating Heat Changes on the Overhead Projector with a Projecting Thermometer  Chinhyu Hur, Sally Solomon, and Christy Wetzel
Heat changes can be observed by using a culture dish and a thermometer that is projected onto a screen using an overhead projector.
Hur, Chinhyu; Solomon, Sally; Wetzel, Christy. J. Chem. Educ. 1998, 75, 51.
Calorimetry / Thermochemistry |
Solutions / Solvents |
Thermodynamics |
Laboratory Equipment / Apparatus
Home-Study Microlabs  Dietmar Kennepohl
This article presents the use of microscaled chemistry experiments for individual home study and how it can be incorporated into a course with traditional laboratory work.
Kennepohl, Dietmar. J. Chem. Educ. 1996, 73, 938.
Microscale Lab |
Solutions / Solvents |
Calorimetry / Thermochemistry |
Qualitative Analysis |
Precipitation / Solubility
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
Analysis of Cryoscopy Data  Wloch, Peter; Cherniak, E. A.
Method for analyzing cryoscopic data with applications to freezing point depression; includes data and analysis.
Wloch, Peter; Cherniak, E. A. J. Chem. Educ. 1995, 72, 59.
Physical Properties |
Physical Properties |
Stoichiometry
Soda Water, Supercooling or Freezing Point Depression?  Brooker, Murray H.
Composition, preparation, properties, and behavior of soda water.
Brooker, Murray H. J. Chem. Educ. 1994, 71, 903.
Gases |
Water / Water Chemistry |
Precipitation / Solubility |
Solutions / Solvents |
Consumer Chemistry
Freezing point depression in a bottle of soda   Bare, William D.
The "ravenous consumption of soda" by today's students makes an interesting model with which to demonstrate the effect of solute concentration on the freezing point of an aqueous solution.
Bare, William D. J. Chem. Educ. 1991, 68, 1038.
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry
Molecular weight determination by boiling-point elevation of a urea solution  Thomas, Nicholas C.; Saisuwan, Patsy
Avoids the problems associated with determining the molecular weight of an unknown by measuring the freezing-point depression of the unknown in naphthalene solution.
Thomas, Nicholas C.; Saisuwan, Patsy J. Chem. Educ. 1990, 67, 971.
Molecular Properties / Structure |
Physical Properties
Empathy for the exile: Chemistry and the classical literature  Tanner, A. C.; Johnson, J. F.
Estimating the temperature experienced by Ovid 2000 years ago based on his description of frozen wine.
Tanner, A. C.; Johnson, J. F. J. Chem. Educ. 1990, 67, 690.
Physical Properties
Guided inquiry laboratory  Allen, J. B.; Barker, L. N.; Ramsden, J. H.
The primary purpose of this article is to illustrate the concepts involved in converting a traditional "verification" experiment to a "guided inquiry" experiment.
Allen, J. B.; Barker, L. N.; Ramsden, J. H. J. Chem. Educ. 1986, 63, 533.
Phases / Phase Transitions / Diagrams |
Physical Properties
Molecular size and Raoult's Law  Kovac, Jeffrey
An additional cause for deviations from Raoult's Law that is rarely, if ever, mentioned in freshman chemistry texts.
Kovac, Jeffrey J. Chem. Educ. 1985, 62, 1090.
Molecular Properties / Structure |
Physical Properties |
Solutions / Solvents |
Gases
A convenient melting/freezing point depression apparatus  Singman, Charles; Sophianopoulos, Judy; Johnson, Ronald
Incorporates an easily read digital thermometer.
Singman, Charles; Sophianopoulos, Judy; Johnson, Ronald J. Chem. Educ. 1982, 59, 682.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties
Convenient freezing point depression apparatus  Marzzacco, Charles; Collins, Marie
Uses a magnetic stirrer to continuously mix the sample being measured.
Marzzacco, Charles; Collins, Marie J. Chem. Educ. 1980, 57, 650.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Acetamide as a solvent for freezing point depression and solubility experiments  Davis, Jeff C., Jr.
Suggests acetamide as a solvent for freezing point depression and solubility experiments.
Davis, Jeff C., Jr. J. Chem. Educ. 1966, 43, 611.
Precipitation / Solubility |
Physical Properties |
Solutions / Solvents
A eutectic experiment for general chemistry laboratory  Wise, John H.; Shillington, James K.; Watt, William J.; Whitaker, R. D.
This eutectic experiment examines the biphenyl-naphthalene system.
Wise, John H.; Shillington, James K.; Watt, William J.; Whitaker, R. D. J. Chem. Educ. 1964, 41, 96.
Physical Properties |
Phases / Phase Transitions / Diagrams
Molecular weight determination by boiling-point elevation: A freshman research project  Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene
Describes an investigation into factors influencing the results of molecular weight determination by boiling-point elevation and the procedure refined through these efforts.
Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene J. Chem. Educ. 1958, 35, 412.
Physical Properties |
Molecular Properties / Structure |
Undergraduate Research |
Phases / Phase Transitions / Diagrams
A Raoult's law experiment for the general chemistry course: Manometry without a manometer  Harris, Frank E.; Nash, Leonard K.
This paper describes an experiment illustrating Raoult's law that does not require a manometer, vacuum system, or mercury.
Harris, Frank E.; Nash, Leonard K. J. Chem. Educ. 1955, 32, 575.
Liquids