TIGER

Journal Articles: 19 results
A Three-Dimensional Model for Water  J. L. H. Johnson and S. H. Yalkowsky
Using Molymod spheres and magnets to simulate the structure and properties of water and aqueous systems.
Johnson, J. L. H.; Yalkowsky, S. H. J. Chem. Educ. 2002, 79, 1088.
Aqueous Solution Chemistry |
Covalent Bonding |
Lipids |
Liquids |
Solutions / Solvents |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Is Salt Melting When It Dissolves in Water?  Alan Goodwin
Analysis of the chemical meaning of the terms melting and dissolving.
Goodwin, Alan. J. Chem. Educ. 2002, 79, 393.
Liquids |
Solids |
Phases / Phase Transitions / Diagrams
Preparation and Analysis of Multiple Hydrates of Simple Salts  Richard W. Schaeffer, Benny Chan, Shireen R. Marshall, Brian Blasiole, Neetha Khan, Kendra L. Yoder, Melissa E. Trainer, and Claude H. Yoder
A laboratory project in which students prepare a series of hydrates of simple salts and then determine the extent of hydration of the product(s); provides a good introduction to the concepts of solubility, saturation, recrystallization, relative compound stability, and simple gravimetric analysis.
Schaeffer, Richard W.; Chan, Benny; Marshall, Shireen R.; Blasiole, Brian; Khan, Neetha; Yoder, Kendra L.; Trainer, Melissa E.; Yoder, Claude H. J. Chem. Educ. 2000, 77, 509.
Stoichiometry |
Qualitative Analysis |
Crystals / Crystallography |
Precipitation / Solubility |
Gravimetric Analysis |
Quantitative Analysis
The Solubility of Ionic Solids and Molecular Liquids  C. Baer and Sheila M. Adamus
The solubilities of three ionic salts (NaCl, PbCl2, and KAl(SO4)2.12H2O) in water are measured at four temperatures. The concept of recrystallization is introduced as students cool a high-temperature solution and observe crystal formation. Spreadsheet calculations are performed with the group data, which are then graphed, and students observe the wide variance in solubility behavior for the three salts.
Baer, Carl; Adamus, Sheila M. J. Chem. Educ. 1999, 76, 1540.
Noncovalent Interactions |
Laboratory Computing / Interfacing |
Liquids |
Molecular Properties / Structure |
Solutions / Solvents
On the Surface: Mini-Activities Exploring Surface Phenomena  
Activities listed can be used to introduce surface tension and surface area when discussing liquids and gases.
J. Chem. Educ. 1998, 75, 176A.
Surface Science |
Liquids |
Gases |
Kinetics
Solubility and the Perpetuation of Error  Hawkes, S.J.
Error in determining the solubility product of lead iodide.
Hawkes, S.J. J. Chem. Educ. 1998, 75, 138.
Precipitation / Solubility
Letters to the Editor  
Error in determining the solubility product of lead iodide.
J. Chem. Educ. 1998, 75, 138.
Precipitation / Solubility
Densities and miscibilities of liquids and liquid mixtures   Franz, David A.
A sequence of demonstrations that lend themselves to quantitative calculations regarding density.
Franz, David A. J. Chem. Educ. 1991, 68, 594.
Physical Properties |
Liquids
Solubility (Hallgren, Richard) Review II  Gizara, Jeanne M.
This program is divided into four modules and is intended to supplement laboratory experience in solubility determination.
Gizara, Jeanne M. J. Chem. Educ. 1989, 66, A44.
Precipitation / Solubility
Solubility (Hallgren, Richard)  Darrow, Frank W.
This program is divided into four modules and is intended to supplement laboratory experience in solubility determination.
Darrow, Frank W. J. Chem. Educ. 1989, 66, A43.
Precipitation / Solubility
Modifications of some traditional demonstrations with liquids  Stedjee, Brian
Immiscible liquid pairs with similar indexes of refraction.
Stedjee, Brian J. Chem. Educ. 1987, 64, 894.
Liquids |
Solutions / Solvents |
Physical Properties
A demonstration model for immiscibility  Hoffman, A. B.
Uses Magic Sand to demonstrate various solubility principles.
Hoffman, A. B. J. Chem. Educ. 1982, 59, 155.
Solutions / Solvents |
Aqueous Solution Chemistry |
Precipitation / Solubility
The chemical pousse-caf  Worley, John David
Production of a density column with a series of liquids with varying densities.
Worley, John David J. Chem. Educ. 1970, 47, A389.
Liquids |
Physical Properties
Sealed tube experiments  Campbell, J. A.
Lists and briefly describes a large set of "sealed tube experiments," each of which requires less than five minutes to set-up and clean-up, requires less than five minutes to run, provides dramatic results observable by a large class, and illustrates important chemical concepts.
Campbell, J. A. J. Chem. Educ. 1970, 47, 273.
Thermodynamics |
Crystals / Crystallography |
Solids |
Liquids |
Gases |
Rate Law |
Equilibrium
Diffusion of potassium permanganate as a lecture demonstration  Conard, C. R.; Bent, H. E.
Dropping crystals of potassium permanganate into a tall column of water leads to the slow dissolution and diffusion of the potassium permanganate throughout the column over a semester's time.
Conard, C. R.; Bent, H. E. J. Chem. Educ. 1969, 46, 758.
Transport Properties |
Aqueous Solution Chemistry |
Kinetic-Molecular Theory |
Solutions / Solvents |
Liquids
Safe use of flammable liquids in laboratories  Shaw, A. J.
Examines the properties of flammable liquids, as well as their safe handling and proper safety equipment.
Shaw, A. J. J. Chem. Educ. 1968, 45, A821.
Liquids |
Laboratory Management
Solubility of gold in mercury  Brown, John B.
Contrary to the statements found in many chemistry textbooks, gold is not appreciably soluble in mercury.
Brown, John B. J. Chem. Educ. 1960, 37, 415.
Metals |
Precipitation / Solubility
Textbook errors: XX. Miscellanea No. 2  Mysels, Karol J.
Subjects considered include the meaning of "element," the solubility of phenol in carbonate solutions, and the change of vapor pressure with temperature.
Mysels, Karol J. J. Chem. Educ. 1958, 35, 568.
Precipitation / Solubility |
Phenols |
Gases |
Liquids
A Raoult's law experiment for the general chemistry course: Manometry without a manometer  Harris, Frank E.; Nash, Leonard K.
This paper describes an experiment illustrating Raoult's law that does not require a manometer, vacuum system, or mercury.
Harris, Frank E.; Nash, Leonard K. J. Chem. Educ. 1955, 32, 575.
Liquids