TIGER

Journal Articles: 122 results
Fog Machines, Vapors, and Phase Diagrams  Ed Vitz
This series of demonstrations elucidate the operation of commercial fog machines using common laboratory materials and can be adapted for elementary through tertiary levels. The formation of fogs is discussed in terms of the phase diagram for water and other chemical principles.
Vitz, Ed. J. Chem. Educ. 2008, 85, 1385.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Water / Water Chemistry
A Non-Mercury Thermometer Alternative for Use in Older Melting Point Apparatuses  Lois K. Ongley, Clayton S. Kern, and Barry W. Woods
This work demonstrates that lab-calibrated thermocouples are a statistically accurate and economically reasonable substitute for mercury thermometers to measure the melting point temperature for organic compounds in older Mel-Temp devices.
Ongley, Lois K.; Kern, Clayton S.; Woods, Barry W. J. Chem. Educ. 2008, 85, 1263.
Calibration |
Laboratory Equipment / Apparatus |
Molecular Properties / Structure |
Physical Properties |
Laboratory Management
Helping Students Assess the Relative Importance of Different Intermolecular Interactions  Paul G. Jasien
A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipoledipole interactions, and H-bonding on the normal boiling points for a series of simple, straight-chain organic compounds. Application of this model may be useful in addressing student misconceptions related to the additivity of intermolecular interactions.
Jasien, Paul G. J. Chem. Educ. 2008, 85, 1222.
Chemometrics |
Molecular Properties / Structure |
Noncovalent Interactions |
Physical Properties
Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties  Robert M. Hanson, Patrick Riley, Jeff Schwinefus, and Paul J. Fischer
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level.
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J. J. Chem. Educ. 2008, 85, 1142.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics
Using Molecular Dynamics Simulation To Reinforce Student Understanding of Intermolecular Forces  Phillip R. Burkholder, Gordon H. Purser, and Renee S. Cole
This article presents a series of experiments incorporating molecular dynamics simulations which predict the motion of chemical species based on the application of empirical rules and a physical analysis of the forces that act between the species. These motions can then be shown in vivid graphical form.
Burkholder, Phillip R.; Purser, Gordon H.; Cole, Renee S. J. Chem. Educ. 2008, 85, 1071.
Computational Chemistry |
Hydrogen Bonding |
Molecular Mechanics / Dynamics |
Physical Properties |
Solutions / Solvents
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
Understanding the Clausius–Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker  Monica Galleano, Alberto Boveris, and Susana Puntarulo
Describes a laboratory exercise to understand the effect of pressure on phase equilibrium as described by the ClausiusClapeyron equation. The equipment required is a pressure cooker adapted with a pressure gauge and a thermometer in the lid, allowing the measurement of the pressure and the temperature of the chamber containing the water heated until vaporization.
Galleano, Monica; Boveris, Alberto; Puntarulo, Susana. J. Chem. Educ. 2008, 85, 276.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry
What Are Students Thinking When They Pick Their Answer?  Michael J. Sanger and Amy J. Phelps
330 students were asked to answer a multiple-choice question concerning gas properties at the microscopic level and explain their reasoning. Of those who selected the correct answer, 80% provided explanations consistent with the scientifically accepted answer, while 90% of the students who picked an incorrect choice provided explanations with at least one misconception.
Sanger, Michael J.; Phelps, Amy J. J. Chem. Educ. 2007, 84, 870.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Qualitative Analysis
Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus  Rubin Battino, David A. Dolson, Michael R. Hall, and Trevor M. Letcher
Describes an inexpensive apparatus for the determination of the vapor pressure of a liquid as a function of temperature for the purpose of calculating enthalpy changes of vaporization. Also described are a simple air thermostat and an inexpensive temperature controller based on an integrated temperature sensor.
Battino, Rubin; Dolson, David A.; Hall, Michael R.; Letcher, Trevor M. J. Chem. Educ. 2007, 84, 822.
Gases |
Laboratory Equipment / Apparatus |
Lipids |
Phenols |
Physical Properties |
Thermodynamics |
Liquids |
Phases / Phase Transitions / Diagrams
Teaching Structure–Property Relationships: Investigating Molecular Structure and Boiling Point  Peter M. Murphy
The boiling points for 392 organic compounds are tabulated by carbon chain length and functional group to facilitate a wide range of inquiry-based activities that correlate the effects of chemical structure on physical properties.
Murphy, Peter M. J. Chem. Educ. 2007, 84, 97.
Molecular Properties / Structure |
Physical Properties
Preparation and Viscosity of Biodiesel from New and Used Vegetable Oil. An Inquiry-Based Environmental Chemistry Laboratory  Nathan R. Clarke, John Patrick Casey, Earlene D. Brown, Ezenwa Oneyma, and Kelley J. Donaghy
Presents a simple synthetic laboratory that requires students to find a general synthetic method to make biodiesel (fuel made from clean sources such as vegetable oils) and assess its viscosity versus temperature.
Clarke, Nathan R.; Casey, John Patrick; Brown, Earlene D.; Oneyma, Ezenwa; Donaghy, Kelley J. . J. Chem. Educ. 2006, 83, 257.
Applications of Chemistry |
Esters |
Physical Properties |
Synthesis
Further Analysis of Boiling Points of Small Molecules, CHwFxClyBrz  Guy Beauchamp
Multiple linear regression analysis has proven useful in selecting predictor variables that could significantly clarify the boiling point variation of the CHwFxClyBrz molecules.
Beauchamp, Guy. J. Chem. Educ. 2005, 82, 1842.
Chemometrics |
Physical Properties |
Hydrogen Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Potassium Nitrate  Jay A. Young
The hazards of potassium nitrate are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 1305.
Laboratory Management |
Physical Properties
Potassium Hydroxide  Jay A. Young
The hazards of potassium hydroxide are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 1304.
Laboratory Management |
Physical Properties
Some Insights Regarding a Popular Introductory Gas Law Experiment  Ed DePierro and Fred Garafalo
This paper alerts readers to a potential source of error in one approach to the Dumas method as it is often practiced in introductory chemistry laboratories. The room-temperature vapor pressures of volatile compounds that might be considered as unknowns for the experiment lead to determined molar masses that are too low. The greater the vapor pressure of the compound, the lower the determined molar mass will be, when compared to the accepted value.
DePierro, Ed; Garafalo, Fred. J. Chem. Educ. 2005, 82, 1194.
Gases |
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties
Zinc Nitrate Hexahydrate  Jay A. Young
The hazards of zinc nitrate hexahydrate are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 1144.
Laboratory Management |
Physical Properties
Zinc (dust and bulk)  Jay A. Young
The hazards of zinc (dust and bulk) are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 1143.
Laboratory Management |
Metals |
Physical Properties
Copper(I) Chloride  Jay A. Young
The hazards of copper(I) chloride are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 991.
Laboratory Management |
Physical Properties
Copper(II) Acetate Monohydrate  Jay A. Young
The hazards of copper(II) acetate monohydrate are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 990.
Laboratory Management |
Physical Properties
Fractional Distillation of Air and Other Demonstrations with Condensed Gases  Maria Oliver-Hoyo and William L. Switzer, III
This demonstration builds upon the commonly performed liquefaction of air not only to show the presence of nitrogen and oxygen, but also the presence of two other components, carbon dioxide and water. Several extensions are suggested: one to show boiling point elevation in solution and another to show the elevation of both boiling point and sublimation point with pressure. No special apparatus is required permitting presentations to audiences in a variety of settings. These demonstrations give the opportunity to discuss properties of gases, solution chemistry, and phase equilibria.
Oliver-Hoyo, Maria; Switzer, William L., III. J. Chem. Educ. 2005, 82, 251.
Gases |
Qualitative Analysis |
Atmospheric Chemistry |
Phases / Phase Transitions / Diagrams |
Separation Science
Boiling Point versus Mass  Michael Laing
I am very pleased that Ronald Rich has written making these comments, because he is pre-eminent in this field, beginning with his early book, Periodic Correlations.
Laing, Michael. J. Chem. Educ. 2004, 81, 642.
Atomic Properties / Structure |
Molecular Properties / Structure |
Noncovalent Interactions |
Liquids |
Phases / Phase Transitions / Diagrams
Boiling Point versus Mass   Ronald L. Rich
Laing gave a useful examination of the boiling points of small molecules versus molecular mass. However, a molecule escaping from a liquid is not closely analogous to a satellite breaking free from the earths gravitational field with the requirement of a minimum escape velocity, such that the required kinetic energy is proportional to the mass of the satellite at that escape velocity.
Rich, Ronald L. J. Chem. Educ. 2004, 81, 642.
Molecular Properties / Structure |
Atomic Properties / Structure |
Liquids |
Noncovalent Interactions |
Phases / Phase Transitions / Diagrams
N,N-Dimethylformamide  Jay A. Young
The hazards of N,N-dimethylformamide are described.
Young, Jay A. J. Chem. Educ. 2004, 81, 632.
Physical Properties |
Laboratory Management |
Laboratory Equipment / Apparatus
Chloroacetic acid  Jay A. Young
The hazards of chloroacetic acid are described.
Young, Jay A. J. Chem. Educ. 2004, 81, 631.
Physical Properties |
Laboratory Management |
Acids / Bases |
Laboratory Equipment / Apparatus
Calcium  Jay A. Young
Properties, hazards, and storage requirements for calcium.
Young, Jay A. J. Chem. Educ. 2004, 81, 479.
Laboratory Management |
Physical Properties |
Metals |
Laboratory Equipment / Apparatus
Silver  Jay A. Young
Properties, hazards, and storage requirements for silver.
Young, Jay A. J. Chem. Educ. 2004, 81, 478.
Laboratory Management |
Physical Properties |
Metals |
Laboratory Equipment / Apparatus
Sodium Iodide  Jay A. Young
Properties, hazards, and storage requirements for sodium iodide.
Young, Jay A. J. Chem. Educ. 2004, 81, 330.
Laboratory Equipment / Apparatus |
Laboratory Management |
Physical Properties
Chlorine  Jay A. Young
Properties, hazards, and storage requirements for chlorine.
Young, Jay A. J. Chem. Educ. 2004, 81, 186.
Laboratory Equipment / Apparatus |
Laboratory Management |
Physical Properties
Stearic Acid  Jay A. Young
Properties, hazards, and storage requirements for stearic acid.
Young, Jay A. J. Chem. Educ. 2004, 81, 25.
Laboratory Equipment / Apparatus |
Laboratory Management |
Carboxylic Acids |
Acids / Bases |
Physical Properties
Triethanolamine  Jay A. Young
Properties, hazards, and storage requirements for triethanolamine.
Young, Jay A. J. Chem. Educ. 2004, 81, 24.
Laboratory Equipment / Apparatus |
Laboratory Management |
Amines / Ammonium Compounds |
Physical Properties |
Alcohols
Lead Acetate Trihydrate  Jay A. Young
Properties, hazards, and storage requirements for lead acetate trihydrate.
Young, Jay A. J. Chem. Educ. 2003, 80, 1374.
Laboratory Equipment / Apparatus |
Laboratory Management |
Physical Properties
Mercury(II) Nitrate Monohydrate  Jay A. Young
Properties, hazards, and storage requirements for mercury(I) nitrate monohydrate.
Young, Jay A. J. Chem. Educ. 2003, 80, 1373.
Laboratory Equipment / Apparatus |
Laboratory Management |
Physical Properties
Sodium Dichromate Dihydrate  Jay A. Young
Properties, hazards, and storage requirements for sodium dichromate dihydrate.
Young, Jay A. J. Chem. Educ. 2003, 80, 1251.
Laboratory Equipment / Apparatus |
Laboratory Management |
Physical Properties
Nitrogen, Liquid  Jay A. Young
Properties, hazards, and storage requirements for liquid nitrogen.
Young, Jay A. J. Chem. Educ. 2003, 80, 1133.
Laboratory Equipment / Apparatus |
Laboratory Management |
Physical Properties
Potassium Dichromate  Jay A. Young
Properties, hazards, and storage requirements for potassium dichromate.
Young, Jay A. J. Chem. Educ. 2003, 80, 874.
Laboratory Management |
Physical Properties |
Laboratory Equipment / Apparatus
Diethyl Phthalate  Jay A. Young
Properties, hazards, and storage requirements for diethyl phthalate.
Young, Jay A. J. Chem. Educ. 2003, 80, 736.
Laboratory Management |
Physical Properties |
Laboratory Equipment / Apparatus
Carbon Disulfide  Jay A. Young
Properties, hazards, and storage requirements for carbon disulfide.
Young, Jay A. J. Chem. Educ. 2003, 80, 735.
Laboratory Management |
Physical Properties |
Laboratory Equipment / Apparatus
Antimony(III) Chloride  Jay A. Young
Properties, hazards, and storage requirements for antimony(III) chloride.
Young, Jay A. J. Chem. Educ. 2003, 80, 611.
Laboratory Management |
Physical Properties |
Laboratory Equipment / Apparatus
Isopropyl Ether  Jay A. Young
Properties, hazards, and storage requirements for isopropyl ether.
Young, Jay A. J. Chem. Educ. 2003, 80, 609.
Laboratory Management |
Physical Properties |
Laboratory Equipment / Apparatus
Citric Acid  Jay A. Young
Properties, hazards, and storage requirements for citric acid.
Young, Jay A. J. Chem. Educ. 2003, 80, 480.
Laboratory Management |
Physical Properties |
Laboratory Equipment / Apparatus
Chromium(VI) Oxide, CrO3  Jay A. Young
Properties, hazards, and storage requirements for chromium(VI) oxide.
Young, Jay A. J. Chem. Educ. 2003, 80, 259.
Physical Properties |
Laboratory Management |
Laboratory Equipment / Apparatus
Aluminum Oxide, Al2O3  Jay A. Young
Properties, hazards, and storage requirements for aluminum oxide.
Young, Jay A. J. Chem. Educ. 2003, 80, 258.
Physical Properties |
Laboratory Management |
Laboratory Equipment / Apparatus
CLIP: Glycerol  Jay A. Young
Properties, hazards, and storage requirements for glycerol.
Young, Jay A. J. Chem. Educ. 2003, 80, 25.
Physical Properties |
Laboratory Management |
Laboratory Equipment / Apparatus
CLIP: Ammonia, aqueous  Jay A. Young
Properties, hazards, and storage requirements for ammonia.
Young, Jay A. J. Chem. Educ. 2003, 80, 24.
Physical Properties |
Laboratory Management |
Laboratory Equipment / Apparatus
An After-Dinner Trick   JCE Editorial Staff
Using freezing-point depression to lift an ice cube out of a glass of water with a thread.
JCE Editorial Staff. J. Chem. Educ. 2002, 79, 480A.
Aqueous Solution Chemistry |
Consumer Chemistry |
Phases / Phase Transitions / Diagrams
Sodium Nitrate  Jay A. Young
Properties, hazards, and storage requirements for sodium nitrate.
Young, Jay A. J. Chem. Educ. 2002, 79, 1414.
Physical Properties |
Laboratory Management |
Laboratory Equipment / Apparatus
Nitric Acid (approx. 70%)  Jay A. Young
Properties, hazards, and storage requirements for nitric acid.
Young, Jay A. J. Chem. Educ. 2002, 79, 1413.
Physical Properties |
Laboratory Management |
Acids / Bases |
Laboratory Equipment / Apparatus
Sodium Carbonate (anhydrous) Na2CO3  Jay A. Young
Properties, hazards, and storage requirements for anhydrous sodium carbonate.
Young, Jay A. J. Chem. Educ. 2002, 79, 1315.
Laboratory Management |
Physical Properties
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
Sodium Fluoride  Jay A. Young
Properties, hazards, and storage requirements for sodium fluoride.
Young, Jay A. J. Chem. Educ. 2002, 79, 1197.
Laboratory Management |
Physical Properties
Osmium Tetroxide  Jay A. Young
Properties, hazards, and storage requirements for osmium tetroxide.
Young, Jay A. J. Chem. Educ. 2002, 79, 1064.
Laboratory Management |
Physical Properties
Sulfur (S8)  Jay A. Young
Properties, hazards, and storage requirements for sulfur.
Young, Jay A. J. Chem. Educ. 2002, 79, 1063.
Laboratory Management |
Physical Properties
Potassium Perchlorate: Chemical Laboratory Information Profile  Jay A. Young
Properties, hazards, and storage requirements for potassium perchlorate.
Young, Jay A. J. Chem. Educ. 2002, 79, 937.
Laboratory Management |
Physical Properties
Potassium Chlorate: Chemical Laboratory Information Profile  Jay A. Young
Properties, hazards, and storage requirements for potassium chlorate.
Young, Jay A. J. Chem. Educ. 2002, 79, 936.
Laboratory Management |
Physical Properties
Acetaldehyde  Jay A. Young
Properties, hazards, and storage requirements for acetaldehyde.
Young, Jay A. J. Chem. Educ. 2002, 79, 672.
Physical Properties |
Laboratory Management
Chemical Laboratory Information Profile: Sodium  Jay A. Young
Properties, hazards, and storage requirements for sodium.
Young, Jay A. J. Chem. Educ. 2002, 79, 425.
Physical Properties |
Laboratory Management |
Metals
Formic Acid  Jay A. Young
Properties, hazards, and storage requirements for formic acid.
Young, Jay A. J. Chem. Educ. 2002, 79, 157.
Acids / Bases |
Physical Properties |
Laboratory Management |
Carboxylic Acids
Chemical Laboratory Information Profile: Oleic Acid  Jay A. Young
Properties, hazards, and storage requirements for oleic acid.
Young, Jay A. J. Chem. Educ. 2002, 79, 24.
Laboratory Management |
Physical Properties |
Acids / Bases
Chemical Laboratory Information Profile: Arsenic(III) Oxide  Jay A. Young
Properties, hazards, and storage requirements for arsenic(III) oxide.
Young, Jay A. J. Chem. Educ. 2002, 79, 23.
Laboratory Management |
Physical Properties
Boiling Points of the Family of Small Molecules CHwFxClyBrz: How Are They Related to Molecular Mass?  Michael Laing
Investigating the role of molecular mass in determining boiling points of small molecules.
Laing, Michael. J. Chem. Educ. 2001, 78, 1544.
Atomic Properties / Structure |
Noncovalent Interactions |
Liquids |
Molecular Properties / Structure |
Physical Properties
Chemical Laboratory Information Profile: Turpentine  Jay A. Young
Properties, hazards, and storage requirements for turpentine.
Young, Jay A. J. Chem. Educ. 2001, 78, 1459.
Laboratory Management |
Physical Properties
Chemical Laboratory Information Profile: Acetic Anhydride  Jay A. Young
Properties, hazards, and storage requirements for acetic anhydride.
Young, Jay A. J. Chem. Educ. 2001, 78, 1176.
Laboratory Management |
Physical Properties
Chemical Laboratory Information Profile: Acetone  Jay A. Young
Properties, hazards, and storage requirements for acetone.
Young, Jay A. J. Chem. Educ. 2001, 78, 1175.
Laboratory Management |
Physical Properties
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
Chemical Laboratory Information Profile: Water  Jay A. Young
Properties, hazards, and storage requirements for water.
Young, Jay A. J. Chem. Educ. 2001, 78, 874.
Laboratory Management |
Physical Properties |
Water / Water Chemistry
Chemical Laboratory Information Profile: Hydrochloric Acid (approx 36%)  Jay A. Young
Properties, hazards, and storage requirements for hydrochloric acid.
Young, Jay A. J. Chem. Educ. 2001, 78, 873.
Laboratory Management |
Physical Properties |
Acids / Bases
Chemical Laboratory Information Profile: Sulfuric Acid (approx. 98%)  Jay A. Young
Properties, hazards, and storage requirements for concentrated sulfuric acid.
Young, Jay A. J. Chem. Educ. 2001, 78, 722.
Laboratory Management |
Physical Properties |
Acids / Bases
Chemical Laboratory Information Profile: Acetic Acid (glacial)  Jay A. Young
Properties, hazards, and storage requirements for acetic acid (glacial).
Young, Jay A. J. Chem. Educ. 2001, 78, 721.
Acids / Bases |
Laboratory Management |
Physical Properties |
Carboxylic Acids
Chemical Laboratory Information Profile: Borax  Jay A. Young
Properties, hazards, and storage requirements for borax.
Young, Jay A. J. Chem. Educ. 2001, 78, 588.
Laboratory Management |
Physical Properties
Chemical Laboratory Information Profile: n-Hexane  Jay A. Young
Properties, hazards, and storage requirements for n-hexane.
Young, Jay A. J. Chem. Educ. 2001, 78, 587.
Alkanes / Cycloalkanes |
Laboratory Management |
Physical Properties
Floating Plastics: An Initial Chemistry Laboratory Experience  Enrique A. Hughes, Helena M. Ceretti, and Anita Zalts
Students prepare a series of solutions with gradually increasing densities. Then they are given plastic samples of known and unknown composition and they estimate the densities of the samples by observing in which solutions they float and in which they sink; these densities are used to identify the plastics.
Hughes, Enrique A.; Ceretti, Helena M.; Zalts, Anita. J. Chem. Educ. 2001, 78, 522.
Nonmajor Courses |
Solutions / Solvents |
Physical Properties
Chemical Laboratory Information Profile: Sodium Hydroxide  Jay A. Young
Properties, hazards, and storage requirements for sodium hydroxide.
Young, Jay A. J. Chem. Educ. 2001, 78, 447.
Acids / Bases |
Laboratory Management |
Physical Properties
Are Fizzing Drinks Boiling? A Chemical Insight from Chemical Education Research  Alan Goodwin
The suggestion that fizzing drinks are examples of liquids boiling at room temperature has proved to be controversial among both chemists and chemical educators. This paper presents a case for believing this everyday system to be a good example of a boiling solution and the consequent separation of carbon dioxide from the solution to exemplify fractional distillation.
Goodwin, Alan. J. Chem. Educ. 2001, 78, 385.
Aqueous Solution Chemistry |
Kinetic-Molecular Theory |
Equilibrium |
Gases |
Solutions / Solvents |
Phases / Phase Transitions / Diagrams
Ultramicro-Boiling-Point Determination--A Modification  Henry Brouwer
The determination of microscale boiling points in a melting-point tube may be simplified by replacing the micro-bell bubbler with an ultrathin capillary tube bubbler.
Brouwer, Henry. J. Chem. Educ. 2000, 77, 1480.
Laboratory Equipment / Apparatus |
Microscale Lab |
Phases / Phase Transitions / Diagrams
Thermodynamics of Water Superheated in the Microwave Oven  B. H. Erné
Water is conveniently heated above its normal boiling point in a microwave oven in a glass microwave oven teapot. Water stops boiling soon after heating is interrupted, but subsequently added rough particles can still act as nucleation centers for a brief, spectacular burst of steam bubbles. The heat to make those steam bubbles obviously comes from the water itself, so that one can conclude that the boiling water was superheated, which is confirmed with a thermometer.
Erné, B. H. J. Chem. Educ. 2000, 77, 1309.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Liquids
An Inexpensive Microscale Method for Measuring Vapor Pressure, Associated Thermodynamic Variables, and Molecular Weight  Jason C. DeMuro, Hovanes Margarian, Artavan Mkhikian, Kwang Hi No, and Andrew R. Peterson
Existing methods for measuring vapor pressure are too expensive or not quantitative enough for chemistry classes in secondary schools. Our method measures the vapor pressure inside a bubble trapped in a graduated microtube made from a disposable 1-mL glass pipet.
DeMuro, Jason C.; Margarian, Hovanes; Mkhikian, Artavan; No, Kwang Hi; Peterson, Andrew R. J. Chem. Educ. 1999, 76, 1113.
Aqueous Solution Chemistry |
Gases |
Microscale Lab |
Phases / Phase Transitions / Diagrams
Integrating Computers into the First-Year Chemistry Laboratory: Application of Raoult's Law to a Two-Component System  R. Viswanathan and G. Horowitz
First-year chemistry students are introduced to a spreadsheet program to calculate the boiling points of a two-component solution containing a volatile solute. The boiling points are predicted by combining the Clausius-Clapeyron equation and Raoult's law. A simple experimental setup is used to measure the boiling points of solutions of varying compositions.
Viswanathan, Raji; Horowitz, Gail. J. Chem. Educ. 1998, 75, 1124.
Laboratory Computing / Interfacing |
Physical Properties |
Solutions / Solvents |
Phases / Phase Transitions / Diagrams
Boiling Point and Molecular Weight (the author replies)  Rich, R.L.
The author agrees that polarizability is a major determinat of boiling points. However, the author differs on how to apply the above on nonpolar molecules.
Rich, R.L. J. Chem. Educ. 1998, 75, 394.
Physical Properties
Boiling Point and Molecular Weight  Myers, R.Thomas
Boiling points of nonpolar compounds have several factors including polarizability, size, ionization potential, and shape. Molecular weight is not a factor while determining boiling points.
Myers, R.Thomas J. Chem. Educ. 1998, 75, 394.
Physical Properties
Letters to the Editor  
Boiling points of nonpolar compounds have several factors including polarizability, size, ionization potential, and shape. Molecular weight is not a factor while determining boiling points.
J. Chem. Educ. 1998, 75, 394.
Physical Properties
Teaching Distillation Knowledge: A Video Film about Distillation Bridging a Gap Between Theory and Practice  Martin J. Goedhart, Hanno van Keulen, Theo M. Mulder, Adri H. Verdonk, and Wobbe De Vos
The authors observed that first year students hardly used their knowledge of phase theory in the design and performance of distillations. They therefore developed a video in which they confront students with the boiling properties of liquid mixtures.
Goedhart, Martin J.; van Keulen, Hanno; Mulder, Theo M.; Verdonk, Adri H.; De Vos, Wobbe. J. Chem. Educ. 1998, 75, 378.
Learning Theories |
Phases / Phase Transitions / Diagrams |
Separation Science |
Liquids |
Physical Properties
Boiling Point and Molecular Weight  Rich, Ronald L.
No relationship between boiling points and molecular weight.
Rich, Ronald L. J. Chem. Educ. 1996, 73, A294.
Physical Properties |
Hydrogen Bonding |
Noncovalent Interactions
Letters  
No relationship between boiling points and molecular weight.
J. Chem. Educ. 1996, 73, A294.
Physical Properties |
Hydrogen Bonding |
Noncovalent Interactions
Notes on Vapor Pressure Equilibria Measurements  Albert G. Krieger, John W. Henderson
Freshman students at our institution use manometers and 24/40 ground-glass distillation apparatus (abandoned by our organic chemistry classes) to measure boiling points at reduced pressures. We have found that the availability of state-of-the-art equipment need not limit the ability to teach and demonstrate fundamental principles
Krieger, Albert G.; Henderson, John W. J. Chem. Educ. 1996, 73, 1039.
Gases |
Physical Properties
First Day in Organic Lab  Christine K. F. Hermann
This experiment is designed to introduce students to the techniques of reflux, distillation, gas chromatography, and the determination of boiling point and melting point during one lab period.
J. Chem. Educ. 1996, 73, 852.
Separation Science |
Gas Chromatography |
Physical Properties |
Qualitative Analysis |
Instrumental Methods
"Who Has the Same Substance that I Have?": A Blueprint for Collaborative Learning Activities  Brian P. Coppola and Richard G. Lawton
Activities for freshman organic chemistry in which students learn lab techniques through a relative identification of a substance using an inquiry approach.
Coppola, Brian P.; Lawton, Richard G. J. Chem. Educ. 1995, 72, 1120.
Physical Properties |
Qualitative Analysis
Put the Body to Them!  Perkins, Robert R.
Examples of chemistry demonstrations involving student participation, including quantized states and systems, boiling point trends, intermolecular vs. intramolecular changes, polar/nonpolar molecules, enantiomers and diastereomers, and chromatography.
Perkins, Robert R. J. Chem. Educ. 1995, 72, 151.
Chromatography |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Molecular Properties / Structure |
Chirality / Optical Activity |
Quantum Chemistry |
Diastereomers |
Enantiomers
An Intermolecular Forces Study Using IBM PSL  Eckberg, Christine; Zimmer, John; Reeves, James; Ward, Charles
Procedure to investigate evaporative cooling for a family of straight chain alcohols.
Eckberg, Christine; Zimmer, John; Reeves, James; Ward, Charles J. Chem. Educ. 1994, 71, A225.
Physical Properties |
Noncovalent Interactions |
Alcohols
Nickel-Titanium Memory Metal: A "Smart" Material Exhibiting a Solid-State Phase Change and Superelasticity  Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C.
Several simple experiments that illustrate the shape-memory, mechanical, and acoustical properties of Nitinol.
Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C. J. Chem. Educ. 1994, 71, 334.
Solid State Chemistry |
Phases / Phase Transitions / Diagrams |
Materials Science |
Applications of Chemistry
Cryophori, Hot Molecules, and Frozen Nitrogen  Hunter, Paul W. W.; Knoespel, Sheldon L.
Freezing water and nitrogen at low atmospheric pressure.
Hunter, Paul W. W.; Knoespel, Sheldon L. J. Chem. Educ. 1994, 71, 67.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Understanding the fate of petroleum hydrocarbons in the subsurface environment  Chen, Chien T.
This article reviews our current understanding and then specifies the requirements for research that will improve our ability to detect hydrocarbons and predict their fate in the subsurface environment.
Chen, Chien T. J. Chem. Educ. 1992, 69, 357.
Alkanes / Cycloalkanes |
Phases / Phase Transitions / Diagrams
Molecular weight determination by boiling-point elevation of a urea solution  Thomas, Nicholas C.; Saisuwan, Patsy
Avoids the problems associated with determining the molecular weight of an unknown by measuring the freezing-point depression of the unknown in naphthalene solution.
Thomas, Nicholas C.; Saisuwan, Patsy J. Chem. Educ. 1990, 67, 971.
Molecular Properties / Structure |
Physical Properties
Identifying polar and nonpolar molecules  Tykodi, R. J.
A scheme based on the ideas of molecular symmetry for determining the polar / nonpolar nature of simple molecules.
Tykodi, R. J. J. Chem. Educ. 1989, 66, 1007.
Molecular Properties / Structure |
Physical Properties
The liquid phase of carbon dioxide: A simple lecture demonstration  Andrews, Lester
Demonstrating that liquid CO2 can exist at higher pressures.
Andrews, Lester J. Chem. Educ. 1989, 66, 597.
Liquids |
Phases / Phase Transitions / Diagrams
Physical and chemical properties  Boschmann, Erwin
A series of overhead demonstrations regarding physical and chemical properties.
Boschmann, Erwin J. Chem. Educ. 1987, 64, 891.
Physical Properties |
Liquids |
Precipitation / Solubility |
Magnetic Properties |
Kinetic-Molecular Theory |
Crystals / Crystallography |
Gases
Using chemistry's crystal ball  Allen, Bill
An exercise requiring students to identify nine elements, each suggested by a set of four to six clues describing physical and chemical properties of an element.
Allen, Bill J. Chem. Educ. 1987, 64, 227.
Periodicity / Periodic Table |
Physical Properties |
Descriptive Chemistry |
Enrichment / Review Materials
Simple demonstrations of the liquefaction of gases  Marzzacco, Charles J.
This demonstration uses simple hydrocarbons to demonstrate the important ideas of states of matter and changes in state.
Marzzacco, Charles J. J. Chem. Educ. 1986, 63, 436.
Phases / Phase Transitions / Diagrams
Molecular size and Raoult's Law  Kovac, Jeffrey
An additional cause for deviations from Raoult's Law that is rarely, if ever, mentioned in freshman chemistry texts.
Kovac, Jeffrey J. Chem. Educ. 1985, 62, 1090.
Molecular Properties / Structure |
Physical Properties |
Solutions / Solvents |
Gases
Focus on forensic experiments  Berry, Keith O.
Experiments involving gunshot patterns, density, and boiling-point determination.
Berry, Keith O. J. Chem. Educ. 1985, 62, 1060.
Forensic Chemistry |
Physical Properties
The density and apparent molecular weight of air  Harris, Arlo D.
Simple procedure for determining the density and apparent molecular weight of air.
Harris, Arlo D. J. Chem. Educ. 1984, 61, 74.
Atmospheric Chemistry |
Gases |
Molecular Properties / Structure |
Physical Properties
Analysis of alcohols  McCullough, Brother Thomas
Identifying unknown alcohols using boiling point and viscosity measurements.
McCullough, Brother Thomas J. Chem. Educ. 1984, 61, 68.
Alcohols |
Physical Properties |
Qualitative Analysis
Molecular association and structure of hydrogen peroxide  Gigure, Paul A.
The typical textbook treatment of molecular association and structure of hydrogen peroxide, and the implications of these concepts for the physical properties of hydrogen peroxide tend to be oversimplified and inaccurate.
Gigure, Paul A. J. Chem. Educ. 1983, 60, 399.
Molecular Properties / Structure |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Hydrogen Bonding
General chemistry for engineers  Kybett, B. D.
A logical way introduce polymers into the general chemistry course. From "The Goals of General Chemistry - A Symposium."
Kybett, B. D. J. Chem. Educ. 1982, 59, 724.
Physical Properties |
Molecular Properties / Structure
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
Measuring the heat of vaporization using the Clausius-Clapeyron equation  Driscoll, Jerry A.
Uses toluene, methylcyclohexane, or piperidine to measure the heat of vaporization using the Clausius-Clapeyron equation.
Driscoll, Jerry A. J. Chem. Educ. 1980, 57, 667.
Phases / Phase Transitions / Diagrams
The experimental determination of the heat of vaporization of volatile liquids  Chames, Frances; Farver, Nina; Grieve, Catherine; Lynche, Archie; Mac, Michelle; Rickel, Renee; Sears, Jerry
An experiment whereby the heat of vaporization of a volatile liquid can be determined from an Arrhenius plot.
Chames, Frances; Farver, Nina; Grieve, Catherine; Lynche, Archie; Mac, Michelle; Rickel, Renee; Sears, Jerry J. Chem. Educ. 1980, 57, 362.
Calorimetry / Thermochemistry |
Liquids |
Phases / Phase Transitions / Diagrams
Lecture demonstration of vanishing meniscus in vapor liquid transition  Duus, H. C.
Shows how the interface between vapor and liquid propane vanishes.
Duus, H. C. J. Chem. Educ. 1979, 56, 614.
Liquids |
Gases |
Phases / Phase Transitions / Diagrams
Freezing ice cream and making caramel topping  Plumb, Robert C.; Olson, John Otto; Bowman, Leo H.
The obscurity of "colligative properties" can be dispelled by this ice cream example.
Plumb, Robert C.; Olson, John Otto; Bowman, Leo H. J. Chem. Educ. 1976, 53, 49.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics |
Applications of Chemistry
Phase changes of hexachloroethane  Shavitz, Richard
A demonstration of the sublimation of hexachloroethane.
Shavitz, Richard J. Chem. Educ. 1975, 52, 231.
Phases / Phase Transitions / Diagrams |
Physical Properties
A relevant sublimation experiment  Mitchell, R. H.; Scott, W. A.; West, P. R.
The new "solid state" air fresheners provide the basis of an interesting sublimation experiment for the first assignment of a non-majors laboratory entitled "Physical Constants."
Mitchell, R. H.; Scott, W. A.; West, P. R. J. Chem. Educ. 1974, 51, 683.
Nonmajor Courses |
Phases / Phase Transitions / Diagrams
Density gradients in chemistry teaching  Miller, P. J.
Outlines experiments in which a density gradient may be used to advantage, including the analysis of organic compounds, aqueous solutions, binary mixtures of organic compounds, solids, and solvent extractions.
Miller, P. J. J. Chem. Educ. 1972, 49, 278.
Aqueous Solution Chemistry |
Solids |
Physical Properties |
Solutions / Solvents
The snowmaking machines  Plumb, Robert C.
Illustrating principles of thermodynamics in gas expansions and phase changes.
Plumb, Robert C. J. Chem. Educ. 1970, 47, 176.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Chemical principles exemplified  Plumb, Robert C.
Introduction to a new series, containing "exempla" (brief anecdotes about materials and phenomena which exemplify chemical principles). [Debut]
Plumb, Robert C. J. Chem. Educ. 1970, 47, 175.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Equilibrium |
Photochemistry |
Applications of Chemistry
A modified micro-boiling-point technique  Bulbenko, George F.
A short note regarding the use of a commercial melting point tube as a fine capillary bubbler for micro-boiling-point determination.
Bulbenko, George F. J. Chem. Educ. 1968, 45, 43.
Phases / Phase Transitions / Diagrams |
Microscale Lab
Laboratory demonstration of fractional distillation  Coleman, H. M.
The method described here permits a quick analysis of the several distillates by direct visualization of one of the two components of a binary mixture containing toluene and acetone.
Coleman, H. M. J. Chem. Educ. 1967, 44, 476.
Phases / Phase Transitions / Diagrams |
Separation Science
Microboiling point determination at atmospheric pressure  Chaco, M. C.
This microboiling point determination uses a melting-point capillary
Chaco, M. C. J. Chem. Educ. 1967, 44, 474.
Phases / Phase Transitions / Diagrams |
Microscale Lab |
Physical Properties
Sulfuric acid and the hydrated hydronium ion  Jurale, Bernard
Describes how the sulfuric acid-water system can be used to establish the identity of the hydronium and hydrated hydronium ions.
Jurale, Bernard J. Chem. Educ. 1964, 41, 573.
Acids / Bases |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams
Boiling point and molecular weight  Rich, Ronald
This short note points out that molecular weight, by itself, has negligible influence on boiling point.
Rich, Ronald J. Chem. Educ. 1962, 39, 454.
Phases / Phase Transitions / Diagrams |
Physical Properties
A boiling point apparatus  Lykos, Peter G.
A one-piece boiling-point apparatus that utilizes Cottrell's principle of spraying the thermometer with boiling liquid is described.
Lykos, Peter G. J. Chem. Educ. 1958, 35, 565.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Molecular weight determination by boiling-point elevation: A freshman research project  Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene
Describes an investigation into factors influencing the results of molecular weight determination by boiling-point elevation and the procedure refined through these efforts.
Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene J. Chem. Educ. 1958, 35, 412.
Physical Properties |
Molecular Properties / Structure |
Undergraduate Research |
Phases / Phase Transitions / Diagrams
The determination of normal boiling points at high altitudes  Levy, Luis; Proano, Oswaldo E.
A pressurized distillation apparatus is useful for the direct determination of the normal boiling point, regardless of the outside atmospheric pressure.
Levy, Luis; Proano, Oswaldo E. J. Chem. Educ. 1957, 34, 440.
Phases / Phase Transitions / Diagrams
A method of estimating the boiling points of organic liquids  Pearson, D. E.
Discusses the relationship between the molecular structure of organic liquids and their boiling point.
Pearson, D. E. J. Chem. Educ. 1951, 28, 60.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Molecular Properties / Structure