TIGER

Journal Articles: 34 results
Measuring the Density of a Sugar Solution  Karen I. Peterson
This experiment addresses the concept of equipment calibration for reducing systematic error. Students prepare and measure the densities of sucrose solutions with simple glassware that has been calibrated using the density of water. By careful work, students can determine the density to within 0.5%. allowing accuracy to be a major component of the final grade.
Peterson, Karen I. J. Chem. Educ. 2008, 85, 1089.
Calibration |
Carbohydrates |
Physical Properties |
Quantitative Analysis |
Solutions / Solvents
Effects of a Cooperative Learning Strategy on Teaching and Learning Phases of Matter and One-Component Phase Diagrams  Kemal Doymus
Describes a study whose objective was to determine the effects of cooperative learning (using the jigsaw method) on students' achievement in a general chemistry course.
Doymus, Kemal. J. Chem. Educ. 2007, 84, 1857.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams |
Solids
Hydrophilic Inorganic Macro-Ions in Solution: Unprecedented Self-Assembly Emerging from Historical "Blue Waters"  Tianbo Liu, Ekkehard Diemann, and Achim Müller
The behavior of supramolecular structures in solution is different from that of simple ions, polymers, surfactant micelles, and colloids. New research involving polyoxometalates, which are fully hydrophilic but tend to self-associate into macro-ionic structures, may change our understanding of inorganic ionic solutions.
Liu, Tianbo; Diemann, Ekkehard; Müller, Achim. J. Chem. Educ. 2007, 84, 526.
Aqueous Solution Chemistry |
Colloids |
Materials Science |
Nanotechnology |
Solutions / Solvents |
Spectroscopy |
Lasers |
Physical Properties
Teaching Structure–Property Relationships: Investigating Molecular Structure and Boiling Point  Peter M. Murphy
The boiling points for 392 organic compounds are tabulated by carbon chain length and functional group to facilitate a wide range of inquiry-based activities that correlate the effects of chemical structure on physical properties.
Murphy, Peter M. J. Chem. Educ. 2007, 84, 97.
Molecular Properties / Structure |
Physical Properties
A Demonstration of Refractive Index Matching Using Isopropyl Alcohol and MgF2  Frederick C. Sauls
Isopropyl alcohol and magnesium fluoride have nearly identical refractive indices; thus a chip of MgF2 disappears when immersed in isopropanol.
Sauls, Frederick C. J. Chem. Educ. 2006, 83, 1170.
Mathematics / Symbolic Mathematics |
Physical Properties |
Solids |
Materials Science
From "Greasy Chemistry" to "Macromolecule": Thoughts on the Historical Development of the Concept of a Macromolecule  Pedro J. Bernal
This paper presents a narrative about the historical development of the concept of a macromolecule. It does so to illustrate how the history of science might be used as a pedagogical tool to teach science, particularly to non-majors.
Bernal, Pedro J. J. Chem. Educ. 2006, 83, 870.
Colloids |
Nonmajor Courses |
Polymerization |
Molecular Properties / Structure |
Physical Properties
The Ultrasonic Soda Fountain: A Dramatic Demonstration of Gas Solubility in Aqueous Solutions  John E. Baur and Melinda B. Baur
An ultrasonic bath is used to accelerate the rate at which carbonated beverages equilibrate with the atmosphere. The resulting fountain, which can reach heights in excess of 3 meters, is a dramatic demonstration of the solubility of gases in liquids.
Baur, John E.; Baur, Melinda B. J. Chem. Educ. 2006, 83, 577.
Aqueous Solution Chemistry |
Kinetics |
Physical Properties |
Solutions / Solvents |
Precipitation / Solubility
Preparation and Viscosity of Biodiesel from New and Used Vegetable Oil. An Inquiry-Based Environmental Chemistry Laboratory  Nathan R. Clarke, John Patrick Casey, Earlene D. Brown, Ezenwa Oneyma, and Kelley J. Donaghy
Presents a simple synthetic laboratory that requires students to find a general synthetic method to make biodiesel (fuel made from clean sources such as vegetable oils) and assess its viscosity versus temperature.
Clarke, Nathan R.; Casey, John Patrick; Brown, Earlene D.; Oneyma, Ezenwa; Donaghy, Kelley J. . J. Chem. Educ. 2006, 83, 257.
Applications of Chemistry |
Esters |
Physical Properties |
Synthesis
Turbulent Motion in Ethyl Acetate-Water System  Jamil Ahmad
4 mL of ethyl acetate is added to 10 mL of water in a Petri dish. Within a minute or so, an image of turbulent motion appears on the screen, at first at a few centers that eventually organize themselves in a line. The image of the line of turbulence is quite striking and resembles a moving front of dancing flames.
Ahmad, Jamil. J. Chem. Educ. 2000, 77, 1182.
Liquids |
Solutions / Solvents |
Surface Science
Viscosity Measurement: A Virtual Experiment: Abstract of Issue 9907  N. Papadopoulos, A. T. Pitta, N. Markopoulos, M. Limniou, M. A. N. D. A. Lemos, F. Lemos, and F. G. Freire
Viscosity Measurement includes three virtual experiments: an Ostwald viscometer simulator, a falling-ball viscometer simulator, and a balance simulator for a simple determination of the density of a liquid. Each virtual experiment includes a corresponding theoretical section. Support from the program is sufficient to enable the students to carry out a virtual experiment sensibly and on their own.
Papadopoulos, Nikos; Pitta, A. T.; Markopoulos, N.; Limniou, M.; Lemos, M. A. N. D. A.; Lemos, F. M.; Freire, F. G. J. Chem. Educ. 1999, 76, 1600.
Solutions / Solvents |
Physical Properties
How To Learn and Have Fun with Poly(Vinyl Alcohol) and White Glue  V. de Zea Bermudez, P. Passos de Almeida, and J. Féria Seita
The general behavior of Newtonian, shear-thinning, shear-thickening, thixotropic, negative thixotropic, and viscoelastic fluids is characterized and briefly discussed in terms of existing theoretical models. Whenever possible, examples of these types of fluids taken from everyday life are given for better understanding.
de Zea Bermudez, Verónica; de Almeida, P. Passos; Seita, J. Féria. J. Chem. Educ. 1998, 75, 1410.
Alcohols |
Liquids
Intermolecular Forces in Introductory Chemistry Studied by Gas Chromatography, Computer Models, and Viscometry  Jonathan C. Wedvik, Charity McManaman, Janet S. Anderson, and Mary K. Carroll
Students performing gas chromatographic (GC) analyses of mixtures of n-alkanes and samples that simulate crime scene evidence discover that liquid mixtures can be separated rapidly into their components based upon intermolecular forces. Each group of students is given a liquid sample that simulates one collected at an arson scene, and the group is required to determine the identity of the accelerant. Students also examine computer models to better visualize how molecular structure affects intermolecular forces: London forces, dipole-dipole interactions, and hydrogen bonding.
Wedvik, Jonathan C.; McManaman, Charity; Anderson, Janet S.; Carroll, Mary K. J. Chem. Educ. 1998, 75, 885.
Theoretical Chemistry |
Chromatography |
Noncovalent Interactions |
Gas Chromatography |
Molecular Modeling |
Forensic Chemistry |
Alkanes / Cycloalkanes |
Hydrogen Bonding |
Molecular Properties / Structure
Chemical Etching of Group III - V Semiconductors  Najah J. Kadhim, Stuart H. Laurie, and D. Mukherjee
This article reviews the chemical etchants used for the treatment of GaAs and others III - V. Semiconductors, the factors involved in their mechanism and the many potential pitfalls, arwillan defects associated with them.
Kadhim, Najah J.; Laurie, Stuart H.; Mukherjee, D. J. Chem. Educ. 1998, 75, 840.
Materials Science |
Surface Science |
Physical Properties
Why Do Alcoholic Beverages Have "Legs"?  Todd P. Silverstein
After a sip of wine, "legs" of liquid typically run up and down the inside of the glass for many minutes. This phenomenon stems from the dipole-dipole intermolecular forces that are so important in understanding the physical behavior of aqueous solutions.
Silverstein, Todd P. J. Chem. Educ. 1998, 75, 723.
Noncovalent Interactions |
Aqueous Solution Chemistry |
Learning Theories |
Alcohols |
Hydrogen Bonding
Viscosity of Common Seed and Vegetable Oils  C. Wes Fountain, Jeanne Jennings, Cheryl K. McKie, Patrice Oakman, Monty L. Fetterolf
A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs and the importance of fatty acids to nutrition, an experiment using these common, recognizable oils has broad appeal.
Fountain, C. Wes; Jennings, Jeanne ; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L. . J. Chem. Educ. 1997, 74, 224.
Physical Properties |
Food Science |
Fatty Acids
Effects of Solution Physical Properties on Copper and Chromium Signals in Flame Atomic Absorption Spectrometry  Fàbio R. P. Rocha, Joaquim A. Nòbrega
Instrumental techniques, such as flame atomic absorption spectrometry (FAAS), are frequently used in chemical analysis. Independently of the technique used, the chemical principles must be considered to assure that the analytical results are correct.
Rocha, Fàbio R. P.; Nòbrega , Joaquim A. J. Chem. Educ. 1996, 73, 982.
Physical Properties |
Atomic Spectroscopy |
Qualitative Analysis |
Solutions / Solvents |
Instrumental Methods
Buoyancy Programs; Viscosity of Polymer Solutions; Precision of Calculated Values  Bertrand, Gary L.
Software to simulate the determination of the density of solids; the preparation of polymer solutions and their time to flow through a viscometer; and a program to calculate the uncertainties of results given the input values.
Bertrand, Gary L. J. Chem. Educ. 1995, 72, 492.
Physical Properties |
Chemometrics
The phases of sulfur  Birdwhistell, Kurt R.
Demonstrating the phases of sulfur through viscosity differences.
Birdwhistell, Kurt R. J. Chem. Educ. 1995, 72, 56.
Phases / Phase Transitions / Diagrams |
Physical Properties
The Determination of Number-Average Molecular Weight: A Polymer Experiment for Lower-Division Chemistry Students  Williams, Kathryn R.; Bernier, Ulrich R.
Procedure to determine the number-average molecular weight of a polymer.
Williams, Kathryn R.; Bernier, Ulrich R. J. Chem. Educ. 1994, 71, 265.
Physical Properties
Intensive and extensive: Underused concepts  Canagaratna, Sebastian G.
Methods for teaching intensive and extensive properties.
Canagaratna, Sebastian G. J. Chem. Educ. 1992, 69, 957.
Physical Properties |
Thermodynamics
Viscosity of polymer solutions  Bertrand, Gary L.
This program contains three components: "Density of Liquids", "Viscosity of Liquids", and "Viscosity of Polymer Solutions".
Bertrand, Gary L. J. Chem. Educ. 1992, 69, 818.
Solutions / Solvents |
Physical Properties |
Liquids
Viscosity races   Hemmerlin, William M.; Abel, Kenton B.
A simple demonstration that illustrates the relationship between molecular size and viscosity.
Hemmerlin, William M.; Abel, Kenton B. J. Chem. Educ. 1991, 68, 417.
Physical Properties |
Liquids
Happy and unhappy balls: Neoprene and polynorbornene  Kauffman, George B.; Mason, Stewart W.; Seymour, Raymond B.
A new scientific novelty that can be used to demonstrate a number of scientific principles, either in lecture demonstration or laboratory experiments, is a pair of solid, black, identically appearing spheres.
Kauffman, George B.; Mason, Stewart W.; Seymour, Raymond B. J. Chem. Educ. 1990, 67, 198.
Physical Properties
Identification of polymers in university class experiments  Bowen, Humphry J. M.
With a certain amount of skill and experience, most students can learn how to identify common polymers.
Bowen, Humphry J. M. J. Chem. Educ. 1990, 67, 75.
Physical Properties |
Spectroscopy |
Chromatography
Interfacial phenomena   Anwander, Alberto E.; Grant, Richard P. J. S.; Letcher, Trevor M.
The interfaces between liquids, and liquids and gases, have a number of possible permutations that lead to exotic phenomenon such as antibubbles, floating drops, boules, polyaphrons, and hanging air bubbles. The authors give directions for demonstrating these in the classroom or lab.
Anwander, Alberto E.; Grant, Richard P. J. S.; Letcher, Trevor M. J. Chem. Educ. 1988, 65, 608.
Surface Science |
Liquids |
Gases |
Physical Properties |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams
Classroom demonstrations of polymer principles. Part I. Molecular structure and molecular mass  Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr.
Suggestions for models and techniques to illustrate the structure of polymers, copolymers, molecular mass, osmotic pressure, light scattering, and dilute solution viscosity.
Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr. J. Chem. Educ. 1987, 64, 72.
Molecular Properties / Structure |
Physical Properties
The gelation of polyvinyl alcohol with borax: A novel class participation experiment involving the preparation and properties of a "slime"  Casassa,E.Z.; Sarquis, A.M.; Van Dyke, C.H.
In this report, the authors describe a safe, interesting, and inexpensive class participation experiment, easily and quickly done by all the students in small to moderately large lecture halls.
Casassa,E.Z.; Sarquis, A.M.; Van Dyke, C.H. J. Chem. Educ. 1986, 63, 57.
Alcohols |
Polymerization |
Physical Properties
Analysis of alcohols  McCullough, Brother Thomas
Identifying unknown alcohols using boiling point and viscosity measurements.
McCullough, Brother Thomas J. Chem. Educ. 1984, 61, 68.
Alcohols |
Physical Properties |
Qualitative Analysis
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
Construction of a self-filling pycnometer in five minutes  McCullough, Thomas, C.S.C.
Procedure for constructing a self-filling pycnometer for precise determinations of the specific gravities of liquids.
McCullough, Thomas, C.S.C. J. Chem. Educ. 1973, 50, 546.
Laboratory Equipment / Apparatus |
Physical Properties |
Liquids
Sealed tube experiments  Campbell, J. A.
Lists and briefly describes a large set of "sealed tube experiments," each of which requires less than five minutes to set-up and clean-up, requires less than five minutes to run, provides dramatic results observable by a large class, and illustrates important chemical concepts.
Campbell, J. A. J. Chem. Educ. 1970, 47, 273.
Thermodynamics |
Crystals / Crystallography |
Solids |
Liquids |
Gases |
Rate Law |
Equilibrium
Atomic structure. Radioactivity (continued)   Alyea, Hubert N.
Formation of the complex Cu(NH3)4++ as an example of coordinate covalent bonding and hydrogen bonding as evidenced by viscosity.
Alyea, Hubert N. J. Chem. Educ. 1967, 44, A599.
Coordination Compounds |
Covalent Bonding |
Hydrogen Bonding |
Liquids
Manometric apparatus for vapor and solution studies  Taha, Ahmed A.; Grigsby, Ronald D.; Johnson, James R.; Christian, Sherril D.; Affsprung, Harold E.
Presents a device that can be sued to obtain vapor density and PVT measurements, vapor pressures of solutions and liquids, dew-point pressures and compositions, solubilities of gases in liquids, solubilities of slightly-miscible liquids, equilibrium constants for association reactions in solutions, interactions of vapors and gases with solids, and gas and vapor viscosities.
Taha, Ahmed A.; Grigsby, Ronald D.; Johnson, James R.; Christian, Sherril D.; Affsprung, Harold E. J. Chem. Educ. 1966, 43, 432.
Laboratory Equipment / Apparatus |
Physical Properties |
Solutions / Solvents |
Gases |
Liquids |
Solids
Semimicro cryoscopic molecular-weight determinations  Pinkus, A. G.; Barron, B. G.
These suggestions eliminate two sources of difficulty encountered by students in carrying out cryoscopic (Rast) molecular-weight determinations.
Pinkus, A. G.; Barron, B. G. J. Chem. Educ. 1956, 33, 138.
Physical Properties |
Laboratory Equipment / Apparatus