TIGER

Journal Articles: 17 results
The Correlation of Binary Acid Strengths with Molecular Properties in First-Year Chemistry  Travis D. Fridgen
This article replaces contradictory explanations for the strengths of different binary acids in first-year chemistry textbooks with a single explanation that uses a BornHaber cycle involving homolyic bond dissociation energies, electron affinities, and ion solvation enthalpies to rationalize trends in the strengths of all binary acids.
Fridgen, Travis D. J. Chem. Educ. 2008, 85, 1220.
Acids / Bases |
Atomic Properties / Structure |
Aqueous Solution Chemistry |
Physical Properties |
Thermodynamics
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
Who's in charge?   Perry, William D.; Vogel, Glenn C.
This paper attempts to clarify what chemists mean when they talk about ionic charges, partial charges, oxidation numbers, and formal charges.
Perry, William D.; Vogel, Glenn C. J. Chem. Educ. 1992, 69, 222.
Ionic Bonding |
Oxidation State
A magnetic illustration of the VSEPR theory   Hervas, Manuel; Silverman, L. Phillip
Using Styrofoam balls, magnetic stir bars, and an overhead projector to demonstrate VSPER theory.
Hervas, Manuel; Silverman, L. Phillip J. Chem. Educ. 1991, 68, 861.
VSEPR Theory
A magnetic two-dimensional analogue of VSEPR   Shaw, C. Frank, III; Shaw, Bryan A.
A demonstration based on the serendipitous discovery that magnets shaped like discs or washers will replicate, in two-dimensions, the repulsion among electron pairs that underlie VSEPR theory.
Shaw, C. Frank, III; Shaw, Bryan A. J. Chem. Educ. 1991, 68, 861.
VSEPR Theory
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Immediate recording and prompt tabulation of student laboratory data  Miller, Vernon R.
86. Bits and pieces, 35. Computer programs that can be used to prepare combined laboratory data for distribution to students the next day; students enter their data into a computer before leaving lab.
Miller, Vernon R. J. Chem. Educ. 1987, 64, 793.
Laboratory Computing / Interfacing
Molecular Geometry  Mickey, Charles D.
Methods for determining molecular geometry and the application of VSEPR theory to real molecules.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 210.
Molecular Properties / Structure |
VSEPR Theory
Prediction of molecular polarity by V.S.E.P.R. theory  Daugherty, N. A.
Suggestion for predicting molecular polarity using VSEPR theory.
Daugherty, N. A. J. Chem. Educ. 1969, 46, 283.
Molecular Properties / Structure |
VSEPR Theory
The nature of " ionic" solids: The coordinated polymeric model  Sanderson, R. T.
The author discusses and questions the validity of considering some solids as purely ionic and offers the coordinated polymeric model as a plausible alternative.
Sanderson, R. T. J. Chem. Educ. 1967, 44, 516.
Solids |
Ionic Bonding
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Atomic models in teaching chemistry  Sanderson, R. T.
Contains directions for constructing and using atomic models for instructional purposes.
Sanderson, R. T. J. Chem. Educ. 1960, 37, 307.
Atomic Properties / Structure