TIGER

Journal Articles: 25 results
A New "Bottom-Up" Framework for Teaching Chemical Bonding  Tami Levy Nahum, Rachel Mamlok-Naaman, Avi Hofstein, and Leeor Kronik
This article presents a general framework for bonding that can be presented at different levels of sophistication depending on the student's level and needs. The pedagogical strategy for teaching this model is a "bottom-up" one, starting with basic principles and ending with specific properties.
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Kronik, Leeor. J. Chem. Educ. 2008, 85, 1680.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Materials Science |
MO Theory |
Noncovalent Interactions
The Correlation of Binary Acid Strengths with Molecular Properties in First-Year Chemistry  Travis D. Fridgen
This article replaces contradictory explanations for the strengths of different binary acids in first-year chemistry textbooks with a single explanation that uses a BornHaber cycle involving homolyic bond dissociation energies, electron affinities, and ion solvation enthalpies to rationalize trends in the strengths of all binary acids.
Fridgen, Travis D. J. Chem. Educ. 2008, 85, 1220.
Acids / Bases |
Atomic Properties / Structure |
Aqueous Solution Chemistry |
Physical Properties |
Thermodynamics
Factors That Influence Relative Acid Strength in Water: A Simple Model  Michael J. Moran
The pKa's of diverse aqueous acids HA correlate well with the sum of two gas-phase properties: the HA bond-dissociation enthalpy and the electron affinity of the A radical. It is suggested that rather than bond strength alone or bond polarity, the sum of the enthalpies of these two steps is a fairly good indicator of relative acidity.
Moran, Michael J. J. Chem. Educ. 2006, 83, 800.
Acids / Bases |
Aqueous Solution Chemistry |
Atomic Properties / Structure |
Free Radicals
A Program of Computational Chemistry Exercises for the First-Semester General Chemistry Course  Scott E. Feller, Richard F. Dallinger, and Paul Caylor McKinney
A series of 13 molecular modeling exercises designed for the first-semester general chemistry course is described. The modeling exercises, which are used as both prelecture explorations and postlecture problems, increase in difficulty and in student independence.
Feller, Scott E.; Dallinger, Richard F.; McKinney, Paul Caylor. J. Chem. Educ. 2004, 81, 283.
Atomic Properties / Structure |
Computational Chemistry |
Molecular Modeling |
Molecular Properties / Structure
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter  Greg P. Smestad and Michael Gratzel
A unique solar cell fabrication procedure has been developed using natural anthocyanin dyes extracted from berries. It can be reproduced with a minimum amount of resources in order to provide an interdisciplinary approach for lower-division undergraduate students learning the basic principles of biological extraction, physical chemistry, and spectroscopy as well as environmental science and electron transfer.
Smestad, Greg P.; Grtzel, Michael. J. Chem. Educ. 1998, 75, 752.
Photochemistry |
Plant Chemistry |
Electrochemistry |
Atomic Properties / Structure |
Dyes / Pigments |
Nanotechnology |
Separation Science |
Spectroscopy
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
A Student's Travels, Close Dancing, Bathtubs, and the Shopping Mall: More Analogies in Teaching Introductory Chemistry   Rayner-Canham, Geoff
Four analogies are described for use in introductory chemistry classes.
Rayner-Canham, Geoff J. Chem. Educ. 1994, 71, 943.
Atomic Properties / Structure |
Molecular Properties / Structure |
Equilibrium
Simulations and Interactive Resources  Martin, John S.
12 Simulations and Interactive Resources (SIRs) including Periodic Table Displays, Electron Orbits and Orbitals, Electron Configurations, Barometers and Manometers, Vapor Pressure, Ideal Gas Behavior, Heat Capacity and Heat of Reaction, Approach to Equilibrium, The Law of Chemical Equilibrium, Titration Curves, Electrochemical Cells, and Rate of Reaction.
Martin, John S. J. Chem. Educ. 1994, 71, 667.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Gases |
Calorimetry / Thermochemistry |
Equilibrium |
Titration / Volumetric Analysis |
Electrolytic / Galvanic Cells / Potentials |
Rate Law
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Principles of electronegativity Part I. General nature  Sanderson, R. T.
The concept of electronegativity has been modified, expanded, and debated. The concept can be used to help students gain valuable insights and understanding of the cause-and-effect relationship between atomic structure and compound properties. This is the first in a series of articles that explores the important concept of electronegativity.
Sanderson, R. T. J. Chem. Educ. 1988, 65, 112.
Electrochemistry |
Periodicity / Periodic Table |
Noncovalent Interactions |
Atomic Properties / Structure |
Physical Properties |
Enrichment / Review Materials
Competition analogy  Felty, Wayne L.
Using football competition as an analogy for bond polarity.
Felty, Wayne L. J. Chem. Educ. 1985, 62, 869.
Covalent Bonding |
Atomic Properties / Structure
A unified approach to the study of chemical reactions in freshman chemistry  Cassen, T.; DuBois, Thomas D.
An approach that aims to provide students with the background that will enable them to make reasonable predictions as to the likely products of a chemical reaction.
Cassen, T.; DuBois, Thomas D. J. Chem. Educ. 1982, 59, 377.
Reactions |
Atomic Properties / Structure |
Oxidation State |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Periodicity / Periodic Table
Interpretation of oxidation-reduction  Goodstein, Madeline P.
Presents an interpretation of the oxidation number system based upon the electronegativity principle, thus removing the adjective "arbitrary" frequently found in the descriptions of oxidation number.
Goodstein, Madeline P. J. Chem. Educ. 1970, 47, 452.
Oxidation / Reduction |
Oxidation State |
Atomic Properties / Structure |
Reactions
Electronegativities and group IVA chemistry  Payne, Dwight A., Jr.; Fink, Frank Hall
The teacher of inorganic chemistry should present the representative elements of group IVA and their properties as an intellectual and empirical form of investigation rather than as a mere collection of information.
Payne, Dwight A., Jr.; Fink, Frank Hall J. Chem. Educ. 1966, 43, 654.
Atomic Properties / Structure |
Periodicity / Periodic Table
Atomic orbital molecular models  Martins, George
Atomic orbital molecular models are constructed using molded white expanded polystyrene in the form of spheres and teardrops.
Martins, George J. Chem. Educ. 1964, 41, 658.
Atomic Properties / Structure |
MO Theory
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Atomic models in teaching chemistry  Sanderson, R. T.
Contains directions for constructing and using atomic models for instructional purposes.
Sanderson, R. T. J. Chem. Educ. 1960, 37, 307.
Atomic Properties / Structure
A complete table of electronegativities  Little, Elbert J., Jr.; Jones, Mark M.
Provides a complete periodic table of electronegativity values.
Little, Elbert J., Jr.; Jones, Mark M. J. Chem. Educ. 1960, 37, 231.
Periodicity / Periodic Table |
Atomic Properties / Structure
Models for demonstrating electronegativity and "partial charge"  Sanderson, R. T.
Describes a three-dimensional set of atomic models arranged periodically to illustrate trend in electronegativity and the use of molecular models to illustrate important concepts in general chemistry.
Sanderson, R. T. J. Chem. Educ. 1959, 36, 507.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Modeling |
Molecular Properties / Structure |
Crystals / Crystallography |
Nonmetals
A schematic representation of valence  Sanderson, R. T.
This paper describes a new chart representing the valence structure of atoms; by studying this chart, with the help of a few simple rules, students of elementary chemistry can acquire a useful understanding of chemical combination.
Sanderson, R. T. J. Chem. Educ. 1958, 35, 541.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Enrichment / Review Materials |
Transition Elements |
Metals |
Nonmetals
A new periodic chart with electronegativities  Sanderson, R. T.
This paper describes a new chart that has been designed to portray clearly and vividly patterns in relative atomic radius, electronic configuration, and electronegativity.
Sanderson, R. T. J. Chem. Educ. 1956, 33, 443.
Periodicity / Periodic Table |
Atomic Properties / Structure
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases