TIGER

Journal Articles: 60 results
The Origin of the s, p, d, f Orbital Labels  William B. Jensen
Traces the origins of the s, p, d, and f orbital labels.
Jensen, William B. J. Chem. Educ. 2007, 84, 757.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Spectroscopy
Probing the Orbital Energy of an Electron in an Atom  James L. Bills
This article answers an appeal for simple theoretical interpretations of atomic properties. A theoretical snapshot of an atom, showing the screened nuclear charge and the electron to be ionized at its radius of zero kinetic energy, enables anyone to approximate its ionization energy.
Bills, James L. J. Chem. Educ. 2006, 83, 473.
Atomic Properties / Structure |
Main-Group Elements |
Periodicity / Periodic Table |
Physical Properties |
Quantum Chemistry |
Theoretical Chemistry
Trends in Ionization Energy of Transition-Metal Elements  Paul S. Matsumoto
Examines why, as the number of protons increase along a row in the periodic table, the first ionization energies of the transition-metal elements are relatively steady, but that for the main-group elements increases.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 1660.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Transition Elements
A Program of Computational Chemistry Exercises for the First-Semester General Chemistry Course  Scott E. Feller, Richard F. Dallinger, and Paul Caylor McKinney
A series of 13 molecular modeling exercises designed for the first-semester general chemistry course is described. The modeling exercises, which are used as both prelecture explorations and postlecture problems, increase in difficulty and in student independence.
Feller, Scott E.; Dallinger, Richard F.; McKinney, Paul Caylor. J. Chem. Educ. 2004, 81, 283.
Atomic Properties / Structure |
Computational Chemistry |
Molecular Modeling |
Molecular Properties / Structure
The Place of Zinc, Cadmium, and Mercury in the Periodic Table  William B. Jensen
Explanation for why the zinc group belongs with the main group elements; includes several versions of periodic tables.
Jensen, William B. J. Chem. Educ. 2003, 80, 952.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Descriptive Chemistry |
Atomic Properties / Structure
Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends  Kimberley A. Waldron, Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson
Using charge shielding to identify and explain trends within the periodic table.
Waldron, Kimberley A.; Fehringer, Erin M.; Streeb, Amy E.; Trosky, Jennifer E.; Pearson, Joshua J. J. Chem. Educ. 2001, 78, 635.
Periodicity / Periodic Table |
Theoretical Chemistry |
Atomic Properties / Structure
Ionization Energies, Parallel Spins, and the Stability of Half-Filled Shells  Peter Cann
Three methods for explaining the decrease in first ionization energies between group V and group VI elements are described and commented upon. The quantum mechanical origin of the unhelpful concept of half-shell stability is explained in terms of exchange energy, for which the alternative term parallel spin avoidance factor is suggested. It is recommended that for pre-university students the simplest explanation, in terms of Coulombic repulsion between two electrons occupying the same orbital, is adopted: it involves fewer difficult concepts than the other explanations and its predictions are no less accurate.
Cann, Peter. J. Chem. Educ. 2000, 77, 1056.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
The Genius of Slater's Rules  James L. Reed
With only a few modifications a procedure has been developed that yields the one-electron energies for atoms and ions with a level of detail very well suited for instruction in the structure and properties of atoms. It provides for the computation of very reasonable values for such properties as ionization energies, electron affinities, promotion energies, electronic transitions, and even XPS and ESCA spectra.
Reed, James L. J. Chem. Educ. 1999, 76, 802.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Spectroscopy
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Experimental 4s and 3d Energies in Atomic Ground States  James L. Bills
A new definition is given for the effective charge Zf. HF orbital energies e4s and e3d are used in concert with I4s and I3d to answer four questions: Why does the 4s sublevel fill before 3d? Why is ionization easier for 4s than 3d? When 4s23dn has e3d < e4s, why doesn't 4s23dn -> 4s13dn+1? Why are Cr and Cu each 4s13dn+1 instead of 4s23dn?
Bills, James L. J. Chem. Educ. 1998, 75, 589.
Atomic Properties / Structure
Electron Affinities of the Alkaline Earth Metals and the Sign Convention for Electron Affinity  John C. Wheeler
It has been known since 1987, both theoretically and experimentally, that the ion Ca- is stable. It is now certain that Sr-, Ba-, and Ra- are also stable, and accurate values for the electron affinities of Ca-, Sr-, and Ba- have been determined. Recommended values for these electron affinities, in the units commonly employed in introductory texts and with the sign convention used here, are 2.37, 5.03, and 13.95 kJ/mol for Ca, Sr, and Ba, respectively.
Wheeler, John C. J. Chem. Educ. 1997, 74, 123.
Metals |
Atomic Properties / Structure
Concept Maps in Chemistry Education  Alberto Regis, Pier Giorgio Albertazzi, Ezio Roletto
This article presents and illustrates a proposed application of concept maps in chemistry teaching in high schools. Three examples of the use of concept maps in chemistry teaching are reported and discussed with reference to: atomic structure, oxidation-reduction and thermodynamics.
Regis, Alberto; Albertazzi, Pier Giorgio; Roletto, Ezio. J. Chem. Educ. 1996, 73, 1084.
Learning Theories |
Atomic Properties / Structure |
Oxidation / Reduction |
Thermodynamics
A Mnemonic Method for Assigning the Electronic Configurations of Atoms  Nerea Iza and Manuel Gil
An algorithm for determining electronic configurations.
Iza, Nerea; Gil, Manuel. J. Chem. Educ. 1995, 72, 1025.
Atomic Properties / Structure |
Periodicity / Periodic Table
Moseley's Work on X-Rays and Atomic Number  C. W. Haigh
Explanation of the relationship between Moseley's work in determining atomic numbers, the spectrum of the hydrogen atom, the Bohr theory, and Slater's rules for screening constants.
Haigh, C. W. J. Chem. Educ. 1995, 72, 1012.
Enrichment / Review Materials |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Quantum Chemistry
The Periodic Table of Atoms: Arranging the Elements by a Different Set of Rules  Treptow, Richard S.
The periodic table found in this paper is based on the properties of free gaseous atoms rather than atoms in a chemical environment.
Treptow, Richard S. J. Chem. Educ. 1994, 71, 1007.
Periodicity / Periodic Table |
Atomic Properties / Structure
Some Analogies for Teaching Atomic Structure at the High School Level  Goh, Ngoh Khang; Chia, Lian Sai; Tan, Daniel
Analogies for orbitals, Hund's rule, and the four quantum numbers.
Goh, Ngoh Khang; Chia, Lian Sai; Tan, Daniel J. Chem. Educ. 1994, 71, 733.
Atomic Properties / Structure |
Quantum Chemistry
Transition Metals and the Aufbau Principle  Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D.
Explanation of why the ground state configuration of the neutral transition metals is in most cases 3dn4s2, and why the ground state configuration of the corresponding ions is obtained by preferentially removing the 4s electrons.
Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D. J. Chem. Educ. 1994, 71, 469.
Transition Elements |
Metals |
Atomic Properties / Structure
On Using Incomplete Theories as Cataloging Schemes: Aufbau, Abbau, and VSEPR  Tykodi, R. J.
How to restructure as cataloging schemes the aufbau and abbau procedures for obtaining the ground-state electronic structures of atoms and monatomic ions.
Tykodi, R. J. J. Chem. Educ. 1994, 71, 273.
VSEPR Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Properties / Structure
Pictorial analogies VI: Radial and angular wave function plots   Fortman, John J.
The distribution of an electron around a nucleus is likened to a friend who enjoys eating at restaurants ... especially those close to his/her home.
Fortman, John J. J. Chem. Educ. 1993, 70, 549.
Atomic Properties / Structure |
Quantum Chemistry
The correct interpretation of Hund's rule as applied to "uncoupled states" orbital diagrams  Campbell, Mark L.
The application of Hund's rule by general chemistry students is appropriate as long as Hund's rule is interpreted correctly.
Campbell, Mark L. J. Chem. Educ. 1991, 68, 134.
Atomic Properties / Structure |
Quantum Chemistry
How to get more from ionization energies in the teaching of atomic structure  Mirone, Paolo
A wealth of experimental data could be exploited more extensively and profitably than what is presently done in the teaching of atomic structure.
Mirone, Paolo J. Chem. Educ. 1991, 68, 132.
Atomic Properties / Structure |
Periodicity / Periodic Table
There are no such things as orbitals-Act two!  Simons, Jack
What is the role of molecular orbital theory in chemistry instruction?
Simons, Jack J. Chem. Educ. 1991, 68, 131.
MO Theory |
Atomic Properties / Structure |
Quantum Chemistry
Simple Inorganic Substances: A New Approach (Sanderson, R.T.)  Kauffman, Goerge B.
This book stresses the cause-and-effect relationship between the structures of atoms and the properties of their compounds, with an emphasis on providing a thorough understanding of the most familiar and important inorganic compounds.
Kauffman, Goerge B. J. Chem. Educ. 1990, 67, A26.
Atomic Properties / Structure |
Descriptive Chemistry
Electron dormitory: Analogue  Morreale, Charles
Analogous reasoning and relating filling a dormitory with people and an atom with electrons.
Morreale, Charles J. Chem. Educ. 1990, 67, 862.
Atomic Properties / Structure
Periodic chart pedagogy  Yoder, Claude H.; Yoder, Carolyn S.
Questions based upon a hypothetical set of quantum numbers and their relationships; includes answers.
Yoder, Claude H.; Yoder, Carolyn S. J. Chem. Educ. 1990, 67, 759.
Periodicity / Periodic Table |
Atomic Properties / Structure
Understanding electron configurations   Rieck, David F.
The author has successfully employed an analogy for understanding electron configurations recommended for use in secondary schools as well as in nonmajor sections of college general chemistry.
Rieck, David F. J. Chem. Educ. 1990, 67, 398.
Atomic Properties / Structure |
Nonmajor Courses
The periodicity of electron affinity  Myers, R. Thomas
In general, the values of electron affinity for the elements can be understood in terms of their ground state electron configuration, and the screening (effective nuclear charge) exerted on the added electron by the electrons already present in the neutral atom.
Myers, R. Thomas J. Chem. Educ. 1990, 67, 307.
Atomic Properties / Structure |
Periodicity / Periodic Table
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Visualization of electron clouds in atoms and molecules  Douglas, John E.
110. Visualization of the electron orbital concept continues to challenge and intrigue chemical educators. [October and November 1989 Computer Series both inadvertently called number 107. Numbering restored by skipping 109 and calling January 1990 number 110.]
Douglas, John E. J. Chem. Educ. 1990, 67, 42.
Atomic Properties / Structure |
Molecular Properties / Structure
Teaching the shapes of the hydrogenlike and hybrid atomic orbitals  Allendoerfer, Robert D.
The purpose of this article to show that, in this age of computer graphics, the "difficult to obtain" argument no longer has merit and to give an example of where the standard treatment gives insufficient attention to detail in describing the nodal surfaces of hybrid orbitals.
Allendoerfer, Robert D. J. Chem. Educ. 1990, 67, 37.
Atomic Properties / Structure
Hund's Rule-Like Behavior among Humans!  Nambi, Parthasarathy
On my Metro bus ride to work every day, I have consistently observed Hund's rule-like behavior among humans.
Nambi, Parthasarathy J. Chem. Educ. 1989, 66, 359.
Atomic Properties / Structure
A new mnemonic scheme for applying the Aufbau principle  Parsons, Raymond W.
This paper proposes a new mnemonic scheme for arriving at the ground-state electron configuration of a neutral, isolated atom.
Parsons, Raymond W. J. Chem. Educ. 1989, 66, 319.
Atomic Properties / Structure
Principles of electronegativity Part I. General nature  Sanderson, R. T.
The concept of electronegativity has been modified, expanded, and debated. The concept can be used to help students gain valuable insights and understanding of the cause-and-effect relationship between atomic structure and compound properties. This is the first in a series of articles that explores the important concept of electronegativity.
Sanderson, R. T. J. Chem. Educ. 1988, 65, 112.
Electrochemistry |
Periodicity / Periodic Table |
Noncovalent Interactions |
Atomic Properties / Structure |
Physical Properties |
Enrichment / Review Materials
Periodic contractions among the elements: Or, on being the right size  Mason, Joan
Contraction across the row, irregularities in the build up of the periodic table, the second row anomaly relativistic contraction and expansion among the heavier elements, post-transition anomaly, periodicities of physicochemical properties.
Mason, Joan J. Chem. Educ. 1988, 65, 17.
Descriptive Chemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure
The ground state electronic structure for atoms and monoatomic ions  Tykodi, R. J.
The aufbau (build up) rule for neutral atoms and monatomic anions and the abbau (tear down) rule for monatomic cations.
Tykodi, R. J. J. Chem. Educ. 1987, 64, 943.
Atomic Properties / Structure
Sociology and Pauli's aufbau rules  Hill, Scott T.
A demonstration to preface the discussion of Pauli's exclusion principle and Hund's rule.
Hill, Scott T. J. Chem. Educ. 1987, 64, 27.
Atomic Properties / Structure
The periodic table and electron configurations  Strong, Judith A.
This author shares her approach to having students learn electron configurations.
Strong, Judith A. J. Chem. Educ. 1986, 63, 834.
Atomic Properties / Structure
A simple aid for teaching the theory of atomic structure  Chiang, Hung-cheh; Tseng, Ching-Hwei
A simple game to demonstrate the Pauli exclusion principle, Hund's rule, quantum numbers, electronic energy levels, and electron configurations.
Chiang, Hung-cheh; Tseng, Ching-Hwei J. Chem. Educ. 1984, 61, 216.
Atomic Properties / Structure
Exchange stabilization and the variation of ionization energy in the pn and dn series  Blake, Antony B.
This article is concerned with two types of ionizations that are of special importance to chemists. The author's main purpose is to clarify current textbook interpretations of the peculiar decrease in ionization energy following completion of a half-filled p or d shell.
Blake, Antony B. J. Chem. Educ. 1981, 58, 393.
MO Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry
4s Sometimes is below 3d - the author replies  Pilar, Frank L.
Reply to criticism of original article.
Pilar, Frank L. J. Chem. Educ. 1979, 56, 767.
Atomic Properties / Structure |
Periodicity / Periodic Table
4s Sometimes is below 3d  Carlton, Terry S.
Seeks to correct flaws in cited article.
Carlton, Terry S. J. Chem. Educ. 1979, 56, 767.
Atomic Properties / Structure |
Periodicity / Periodic Table
A low-cost classroom demonstration of the Aufbau Principle  Hanley, James R. III; Hanley, James R., Jr.
Uses golf balls placed in egg cartons to represent the placement of electrons in orbitals.
Hanley, James R. III; Hanley, James R., Jr. J. Chem. Educ. 1979, 56, 747.
Atomic Properties / Structure |
Periodicity / Periodic Table
The spectrum of atomic lithium. An undergraduate laboratory experiment  Miller, Kenneth J.
The author gives a background on the theory and experimental procedure for the spectrum of atomic lithium.
Miller, Kenneth J. J. Chem. Educ. 1974, 51, 805.
Quantum Chemistry |
Spectroscopy |
Quantitative Analysis |
UV-Vis Spectroscopy |
Atomic Properties / Structure
Regularities and relations among ionization potentials of nontransition elements  Liebman, Joel F.
Provides several semiempirical procedures for investigating ionization potentials.
Liebman, Joel F. J. Chem. Educ. 1973, 50, 831.
Atomic Properties / Structure |
Periodicity / Periodic Table
Transparent 3-D models of electron probability distributions  McClellan, A. L.
The authors describe transparent, three-dimensional models in which regions of high electron probability seem to float in space, without definite boundaries and with the "internal" variations of probability density clearly visible.
McClellan, A. L. J. Chem. Educ. 1970, 47, 761.
Atomic Properties / Structure |
Molecular Modeling
Interpretation of oxidation-reduction  Goodstein, Madeline P.
Presents an interpretation of the oxidation number system based upon the electronegativity principle, thus removing the adjective "arbitrary" frequently found in the descriptions of oxidation number.
Goodstein, Madeline P. J. Chem. Educ. 1970, 47, 452.
Oxidation / Reduction |
Oxidation State |
Atomic Properties / Structure |
Reactions
Role of f electrons in chemical binding  Johnson, O.
Data presented suggests that f electrons, by their ineffective screening of the nuclear charge, exert an indirect effect on the binding strength of actions.
Johnson, O. J. Chem. Educ. 1970, 47, 431.
Atomic Properties / Structure |
Metals |
Transition Elements
Improving potassium flame tests  Strong, Frederick C., III
Describes ways for optimizing the classical flame test for potassium.
Strong, Frederick C., III J. Chem. Educ. 1969, 46, 178.
Atomic Properties / Structure |
Qualitative Analysis
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
Atomic orbitals: Limitations and variations  Cohen, Irwin; Bustard, Thomas
The three most widely used methods of arriving at a set of atomic orbitals afford respective hydrogen-like orbitals, self-consistent field orbitals, and various analytical approximations such as the Slater or Morse orbitals, all of which may differ greatly in shape and size from each other.
Cohen, Irwin; Bustard, Thomas J. Chem. Educ. 1966, 43, 187.
Atomic Properties / Structure |
Quantum Chemistry
General chemistry exercise using atomic and molecular orbital models  Walker, Ruth A.
Styrofoam balls and pipecleaners are used to construct models designed to convey an understanding of the three-dimensionality of the electron distribution in the ground state atom and the effect of bonding on this distribution.
Walker, Ruth A. J. Chem. Educ. 1965, 42, 672.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Letters  Gates, Henry S.
Brings the reader's attention to work done by Petit and Dulong in revising a large number of atomic weights in order to bring all of their reported atomic heat capacities into agreement with the hypothesis that atomic heat capacity is the same for all elements.
Gates, Henry S. J. Chem. Educ. 1964, 41, 575.
Atomic Properties / Structure |
Physical Properties
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
A complete table of electronegativities  Little, Elbert J., Jr.; Jones, Mark M.
Provides a complete periodic table of electronegativity values.
Little, Elbert J., Jr.; Jones, Mark M. J. Chem. Educ. 1960, 37, 231.
Periodicity / Periodic Table |
Atomic Properties / Structure
An electron locator  Weis, Norman D.; Meek, John S.
Presents a circular device whose rotation indicates the configuration of electrons within the elements of the periodic table.
Weis, Norman D.; Meek, John S. J. Chem. Educ. 1958, 35, 570.
Atomic Properties / Structure |
Periodicity / Periodic Table
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
A periodic table: The "Aufbauprinzip" as a basis for classification of the elements  Longuet-Higgins, H. C.
This note recommends a presentation of the periodic table designed to show as directly as possible how the place of an element in the table is related to the electronic structure of the atom.
Longuet-Higgins, H. C. J. Chem. Educ. 1957, 34, 30.
Periodicity / Periodic Table |
Atomic Properties / Structure
A new periodic table based on the energy sequence of atomic orbitals  Walker, W. R.; Curthoys, G. C.
Since the theory of atomic and molecular orbitals has proven to be of such value in interpreting the data of inorganic chemistry, it is hoped that a new periodic table based on the energy sequence of atomic orbitals will be an aid to the further systematizing of chemical knowledge.
Walker, W. R.; Curthoys, G. C. J. Chem. Educ. 1956, 33, 69.
Periodicity / Periodic Table |
Atomic Properties / Structure
Regularities among the representative elements: The "paired electron rule"  Condon, F. E.
If the oxidation states characteristic of various groups are correlated in terms of electron subshells, they become reasonable and logical rather than mere facts to be memorized.
Condon, F. E. J. Chem. Educ. 1954, 31, 651.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Oxidation State
Atomic structure and the photoelectric effect  Brockett, Clyde P.
The ubiquitous and inexpensive 110-volt, 2-watt neon glow lamp appears to have been overlooked as a device well suited to a brief but telling demonstration of a few key principles of atomic structure that underlie the study of electrovalence and comparative chemistry.
Brockett, Clyde P. J. Chem. Educ. 1953, 30, 498.
Atomic Properties / Structure