TIGER

Journal Articles: 20 results
Examining Quantum Oddities within the Context of Other Major Scientific Theories  Pablo A. Molina
This article presents an epistemological discussion on the conceptual hurdles shared by quantum theory and evolution, gravity, and special relativity, and offers students a logical structure to deal with wave┬Łparticle duality, the uncertainty principle, boundary conditions, and the quantization of energy.
Molina, Pablo A. J. Chem. Educ. 2008, 85, 1229.
Quantum Chemistry |
Theoretical Chemistry
Do the Series in the Hydrogen Atom Spectrum Ever Overlap?  David W. Ball
Addresses the question, do the series in the hydrogen atom spectrum ever overlap?
Ball, David W. J. Chem. Educ. 2006, 83, 883.
Atomic Properties / Structure |
Quantum Chemistry |
Spectroscopy |
Atomic Spectroscopy
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Quantum Analogies on Campus  Ngai Ling Ma
By using examples drawn from daily life of students, simple analogies are used to illustrate a few quantum concepts which include: wave function, quantum numbers, states, degeneracy of states, transitions, selection rules, probability and probability density, operators and wave-particle dualism.
Ma, Ngai Ling. J. Chem. Educ. 1996, 73, 1016.
Quantum Chemistry
Pictorial analogies VI: Radial and angular wave function plots   Fortman, John J.
The distribution of an electron around a nucleus is likened to a friend who enjoys eating at restaurants ... especially those close to his/her home.
Fortman, John J. J. Chem. Educ. 1993, 70, 549.
Atomic Properties / Structure |
Quantum Chemistry
On a Relation between the Heisenberg and deBroglie Principles  Ludwig, Oliver G.
Author suggests a way of looking at the wave-particle duality with a more concrete application of both relations and an insightful interpretation of the deBroglie principle for use in general chemistry.
Ludwig, Oliver G. J. Chem. Educ. 1993, 70, 28.
Quantum Chemistry
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
How do electrons get across nodes? A problem in the interpretation of the quantum theory  Nelson, P. G.
Suggested responses to the question "How do electrons get across nodes?".
Nelson, P. G. J. Chem. Educ. 1990, 67, 643.
Quantum Chemistry |
Atomic Properties / Structure
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
The wave particle duality: Teaching via a visual metaphor  Bernstein, J.; Shaik, S. S.
Some popular 'optical illusions' can be used to help students understand the wave particle duality and will be sure to capture student interest and attention.
Bernstein, J.; Shaik, S. S. J. Chem. Educ. 1988, 65, 339.
Quantum Chemistry
Illustrating the Heisenberg uncertainty principle  Peckham, Gavin D.
An analogy used with an overhead projector.
Peckham, Gavin D. J. Chem. Educ. 1984, 61, 868.
Quantum Chemistry
Why doesn't the electron fall into the nucleus?  Mason, Franklin P.; Richardson, Robert W.
This paper presents a simple, yet essentially correct model of the atom that can be used to answer the title question for even beginning students of chemistry.
Mason, Franklin P.; Richardson, Robert W. J. Chem. Educ. 1983, 60, 40.
Atomic Properties / Structure |
Quantum Chemistry
Presenting the Bohr atom  Haendler, Blanca L.
A more significant consideration of the role of the Bohr theory in the development of quantum mechanics would have many benefits for introductory and advanced chemistry classes.
Haendler, Blanca L. J. Chem. Educ. 1982, 59, 372.
Atomic Properties / Structure |
Quantum Chemistry
Wolfgang Pauli (1900-1958): A brief anecdotal biography   Festa, Roger R.
A brief biography about one of quantum mechanics' most important intellectual contributors.
Festa, Roger R. J. Chem. Educ. 1981, 58, 273.
Quantum Chemistry
Particles, waves, and the interpretation of quantum mechanics  Christoudouleas, N. D.
A brief description of the conceptual basis of quantum mechanics and the Copenhagen interpretation.
Christoudouleas, N. D. J. Chem. Educ. 1975, 52, 573.
Quantum Chemistry
Quantum mechanics in a course required of all freshmen  Barnes, Donald G.
The author describes a new courses which provides a common introductory experience for student who will eventually major in science and those who will not.
Barnes, Donald G. J. Chem. Educ. 1974, 51, 396.
Quantum Chemistry
Forces and quantum field theory  Brescia, Frank
This article seeks to explain the nature of forces between nucleons in terms of the quantum field theory for the general reader using a simple analogy.
Brescia, Frank J. Chem. Educ. 1970, 47, 642.
Quantum Chemistry |
Atomic Properties / Structure
Educational film loops on atomic and molecular structure  Wahl, Arnold C.; Blukis, Uldis
Describes six films dealing with fundamental principles of atomic and molecular structure.
Wahl, Arnold C.; Blukis, Uldis J. Chem. Educ. 1968, 45, 787.
Atomic Properties / Structure |
Molecular Properties / Structure |
Quantum Chemistry
Demonstration of the uncertainty principle  Laurita, William
Describes a conceptual demonstration of Heisenberg's uncertainty principle.
Laurita, William J. Chem. Educ. 1968, 45, 461.
Quantum Chemistry
Mathematics for scientists. Mathematical methods in the physical sciences. Mathematics for quantum chemistry (Bak, Thor A.; Lichtenberg, Jonas; Boas, Mary L.; Anderson, Jay Martin)  Moore, Walter J.

Moore, Walter J. J. Chem. Educ. 1967, 44, 246.
Mathematics / Symbolic Mathematics |
Quantum Chemistry |
Enrichment / Review Materials