TIGER

Journal Articles: 47 results
Remedial Mathematics for Quantum Chemistry  Lodewijk Koopman, Natasa Brouwer, André Heck, and Wybren Jan Buma
A remedial program designed to tackle the problem of insufficient mathematical knowledge in a first-year quantum chemistry course provides weekly online assignments to prepare students for upcoming lectures, monitors students' progress, and offers feedback. As a result, mathematical skills improved and students became more involved in lectures.
Koopman, Lodewijk; Brouwer, Natasa; Heck, André Buma, Wybren Jan. J. Chem. Educ. 2008, 85, 1233.
Mathematics / Symbolic Mathematics |
Quantum Chemistry
Examining Quantum Oddities within the Context of Other Major Scientific Theories  Pablo A. Molina
This article presents an epistemological discussion on the conceptual hurdles shared by quantum theory and evolution, gravity, and special relativity, and offers students a logical structure to deal with waveparticle duality, the uncertainty principle, boundary conditions, and the quantization of energy.
Molina, Pablo A. J. Chem. Educ. 2008, 85, 1229.
Quantum Chemistry |
Theoretical Chemistry
Physical Chemistry: Thermodynamics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 694 pp. ISBN: 978-0815340911 (paper). $49.95

Physical Chemistry: Statistical Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 292 pp. ISBN: 978-0815340850 (paper). $44.95

Physical Chemistry: Kinetics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 169 pp. ISBN: 978-0815340898 (paper). $44.95

Physical Chemistry: Quantum Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 481 pp. ISBN: 978-0815340874 (paper). $44.95

  John Krenos
Metiu has created a significant set of volumes on undergraduate physical chemistry. The integration of Mathematica and Mathcad workbooks into the four texts provides instructors with an attractive new option in teaching.
Krenos, John. J. Chem. Educ. 2008, 85, 206.
Quantum Chemistry |
Statistical Mechanics |
Thermodynamics |
Kinetics
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Probing the Orbital Energy of an Electron in an Atom  James L. Bills
This article answers an appeal for simple theoretical interpretations of atomic properties. A theoretical snapshot of an atom, showing the screened nuclear charge and the electron to be ionized at its radius of zero kinetic energy, enables anyone to approximate its ionization energy.
Bills, James L. J. Chem. Educ. 2006, 83, 473.
Atomic Properties / Structure |
Main-Group Elements |
Periodicity / Periodic Table |
Physical Properties |
Quantum Chemistry |
Theoretical Chemistry
The "Dissing" of Niels Bohr  Andrew R. Peterson
Contributions made by Bohr to the Periodic Law.
Peterson, Andrew R. J. Chem. Educ. 2004, 81, 33.
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
Semiconductor Nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box  Tadd Kippeny, Laura A. Swafford, and Sandra J. Rosenthal
Using semiconductor nanocrystals as a means for connecting lecture content in quantum mechanics, inorganic, and general chemistry to real-world technological problems.
Kippeny, Tadd; Swafford, Laura A.; Rosenthal, Sandra J. J. Chem. Educ. 2002, 79, 1094.
Quantum Chemistry |
Nanotechnology |
Solid State Chemistry |
Crystal Field / Ligand Field Theory |
Applications of Chemistry
Response to Lowe's Potential-Energy-Only Models  Lowe, John P.
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Lowe, John P. J. Chem. Educ. 2002, 79, 430.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Response to Lowe's Potential-Energy-Only Models (re J. Chem. Educ. 2000, 77, 155-156)  Frank Rioux and Roger L. DeKock
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 2002, 79, 429.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
Have Orbitals Really Been Observed? (re J. Chem. Educ. 2000, 77, 1492-1494)  John C. H. Spence, M. O'Keefe, and J. M. Zuo
Clarification of work described in a previous article.
Spence, John C. H.; O'Keefe, M.; Zuo, J. M. J. Chem. Educ. 2001, 78, 877.
Computational Chemistry |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Have Orbitals Really Been Observed?  Eric R. Scerri
Recent reports claiming to have observed textbook d orbitals are analyzed and it is argued that what was observed indirectly, and not for the first time, was actually electron density. It is also suggested that the tendency to use the terms electron density and orbital to mean the same thing will give rise to confusion in chemical education.
Scerri, Eric R. J. Chem. Educ. 2000, 77, 1492.
Computational Chemistry |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Ionization Energies, Parallel Spins, and the Stability of Half-Filled Shells  Peter Cann
Three methods for explaining the decrease in first ionization energies between group V and group VI elements are described and commented upon. The quantum mechanical origin of the unhelpful concept of half-shell stability is explained in terms of exchange energy, for which the alternative term parallel spin avoidance factor is suggested. It is recommended that for pre-university students the simplest explanation, in terms of Coulombic repulsion between two electrons occupying the same orbital, is adopted: it involves fewer difficult concepts than the other explanations and its predictions are no less accurate.
Cann, Peter. J. Chem. Educ. 2000, 77, 1056.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
How Good Is the Quantum Mechanical Explanation of the Periodic System?  Eric R. Scerri
The use of quantum mechanics, or more specifically, orbitals and electronic configurations in teaching general chemistry is now such a widespread trend that it would be utterly futile to try to reverse it. Moreover, orbitals and configurations have been extremely useful in providing a theoretical framework for the unification of a multitude of chemical facts.
Scerri, Eric R. J. Chem. Educ. 1998, 75, 1384.
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
Deducing the Shell Model from Ionization Energies and the Use of Models in Introductory Chemistry  Ronald J. Gillespie, Richard S. Moog, and James N. Spencer
A major objection of Rioux and DeKock is the statement in the authors' earlier paper that electron repulsion is responsible for the relative ionization energies of H and He. The commentators work clearly shows that a quantum mechanical treatment of this problem reveals that kinetic energy considerations play a crucial role in these values. However, although their criticism is appropriate in the context of this more sophisticated QM treatment, it does not in any way invalidate the authors original paper, the goal of which was to provide a model, namely the shell model, for the electronic structure of atoms that is consistent with experimental ionization energies.
Gillespie, Ronald J.; Moog, Richard S.; Spencer, James N. J. Chem. Educ. 1998, 75, 539.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
The Crucial Role of Kinetic Energy in Interpreting Ionization Energies  Frank Rioux and Roger L. DeKock
The experimental ratio of the ionization energies of H and He is 1.81. The authors show that it is not correct to interpret this ratio using a classical Coulombic potential energy model. Rather a quantum mechanical model is required in which both kinetic and potential energy play a role.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 1998, 75, 537.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
In Defense of Quantum Numbers  Robert M. Richman
A recent paper has argued that the derivation of the periodic table using quantum numbers is a topic that should be eliminated from introductory chemistry courses because it is too abstract, mysterious, and esoteric. A rebuttal is offered based on the claim that it would be wrong to omit discussions of the inductive approach of Mendeleev and the deductive approach initiated by Schroedinger, because they compose the consummate example of that interaction of empirical and rational epistemologies that defines how chemists think.
Richman, Robert M. J. Chem. Educ. 1998, 75, 536.
Learning Theories |
Periodicity / Periodic Table |
Quantum Chemistry
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Quantum Analogies on Campus  Ngai Ling Ma
By using examples drawn from daily life of students, simple analogies are used to illustrate a few quantum concepts which include: wave function, quantum numbers, states, degeneracy of states, transitions, selection rules, probability and probability density, operators and wave-particle dualism.
Ma, Ngai Ling. J. Chem. Educ. 1996, 73, 1016.
Quantum Chemistry
Symmetry Elements and Operations  Albert W.M. Lee, K.M. Leung, W.J Daniel, C.L. Chan
Symmetry Elements and Operations is a multimedia presentation that illustrates the basics of symmetry with three dimensional molecular models and simple text explanations.
Lee, Albert W.M.; Leung, K.M.; Kwong, Daniel W.J.; Chan, C.L. . J. Chem. Educ. 1996, 73, 924.
Molecular Modeling |
Spectroscopy |
Stereochemistry |
Mechanisms of Reactions |
Group Theory / Symmetry |
Quantum Chemistry |
Enrichment / Review Materials
Multimedia Chemistry Lectures  Whitnell, Robert M.; Fernandes, Eric A.; Almassizadeh, Farshad; Love, John J. C.; Dugan, Brookie M.; Sawrey, Barbara A.; Wilson, Kent R.
Development of a full set of multimedia lectures for the second quarter of a two-quarter physical chemistry sequence.
Whitnell, Robert M.; Fernandes, Eric A.; Almassizadeh, Farshad; Love, John J. C.; Dugan, Brookie M.; Sawrey, Barbara A.; Wilson, Kent R. J. Chem. Educ. 1994, 71, 721.
Quantum Chemistry |
Spectroscopy |
Statistical Mechanics
Introducing chemistry to chemical engineering students   Bottani, Eduardo Jorge
Description of changes introduced to a general chemistry course for chemical engineering students.
Bottani, Eduardo Jorge J. Chem. Educ. 1993, 70, 935.
Quantum Chemistry |
Materials Science
Banish quantum mechanics from general chemistry?   Schaefer, Henry F., III.
Is the subject of quantum mechanics unteach-able at the general level? This author disagrees with a previous article in which a case was made for removing quantum mechanics from general chemistry.
Schaefer, Henry F., III. J. Chem. Educ. 1993, 70, 782.
Atomic Spectroscopy |
Quantum Chemistry
The nature of the chemical bond-Once more (3).  Scerri, E. R.
Whether or not the aufbau principle is an illusion, as Ogilvie calls it, should be thoroughly investigated.
Scerri, E. R. J. Chem. Educ. 1992, 69, 602.
Quantum Chemistry
The nature of the chemical bond-Once more (2).  Scott, J. M. W.
The mathematical description of chemical phenomena via quantum mechanics is no less obscure than its purely verbal counterpart, for at some point, the abstract mathematics must be translated into terms familiar to chemists or remain at a level of abstraction that is virtually useless to the chemist working at the bench.
Scott, J. M. W. J. Chem. Educ. 1992, 69, 600.
Quantum Chemistry
The nature of the chemical bond-Once more (1).  Edmiston, Clyde.
The original article is a classic case of incorrect conclusions drawn from largely correct facts.
Edmiston, Clyde. J. Chem. Educ. 1992, 69, 600.
Quantum Chemistry |
MO Theory
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
The H2 + Cl2 explosion as a chemical analogue of the photoelectric effect: A true quantum mechanical demonstration  Knox, Kerro
The photochemical hydrogen-chlorine reaction affords a good example of the quantum aspect of light and its interaction with matter.
Knox, Kerro J. Chem. Educ. 1990, 67, 897.
Reactions |
Quantum Chemistry |
Photochemistry
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Why doesn't the electron fall into the nucleus?  Mason, Franklin P.; Richardson, Robert W.
This paper presents a simple, yet essentially correct model of the atom that can be used to answer the title question for even beginning students of chemistry.
Mason, Franklin P.; Richardson, Robert W. J. Chem. Educ. 1983, 60, 40.
Atomic Properties / Structure |
Quantum Chemistry
Presenting the Bohr atom  Haendler, Blanca L.
A more significant consideration of the role of the Bohr theory in the development of quantum mechanics would have many benefits for introductory and advanced chemistry classes.
Haendler, Blanca L. J. Chem. Educ. 1982, 59, 372.
Atomic Properties / Structure |
Quantum Chemistry
Developing models: What is the atom really like?  Records, Roger M.
Using physical and computer models to illustrate historical changes in our view of the atom.
Records, Roger M. J. Chem. Educ. 1982, 59, 307.
Atomic Properties / Structure |
Quantum Chemistry
Exchange stabilization and the variation of ionization energy in the pn and dn series  Blake, Antony B.
This article is concerned with two types of ionizations that are of special importance to chemists. The author's main purpose is to clarify current textbook interpretations of the peculiar decrease in ionization energy following completion of a half-filled p or d shell.
Blake, Antony B. J. Chem. Educ. 1981, 58, 393.
MO Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry
Wolfgang Pauli (1900-1958): A brief anecdotal biography   Festa, Roger R.
A brief biography about one of quantum mechanics' most important intellectual contributors.
Festa, Roger R. J. Chem. Educ. 1981, 58, 273.
Quantum Chemistry
Particles, waves, and the interpretation of quantum mechanics  Christoudouleas, N. D.
A brief description of the conceptual basis of quantum mechanics and the Copenhagen interpretation.
Christoudouleas, N. D. J. Chem. Educ. 1975, 52, 573.
Quantum Chemistry
Quantum mechanics in a course required of all freshmen  Barnes, Donald G.
The author describes a new courses which provides a common introductory experience for student who will eventually major in science and those who will not.
Barnes, Donald G. J. Chem. Educ. 1974, 51, 396.
Quantum Chemistry
Line spectrum demonstration for the large lecture hall  Driscoll, Jerry A.
The undergraduate's learning experience with quantum mechanics and Bohr's theory can be greatly enhanced by the presentation of a line spectrum demonstration, but these are often hard to see in large lecture halls. The authors present a physical arrangement of an apparatus that can be easily assembled to allow for easier student viewing in a lecture-hall situation.
Driscoll, Jerry A. J. Chem. Educ. 1974, 51, 97.
Atomic Properties / Structure |
Quantum Chemistry |
Spectroscopy
Heat capacity and the equipartition theorem  Dence, Joseph B.
Describes the classical equipartition theorem, its modifications due to quantum mechanics, and its application to some substances.
Dence, Joseph B. J. Chem. Educ. 1972, 49, 798.
Quantum Chemistry
Educational film loops on atomic and molecular structure  Wahl, Arnold C.; Blukis, Uldis
Describes six films dealing with fundamental principles of atomic and molecular structure.
Wahl, Arnold C.; Blukis, Uldis J. Chem. Educ. 1968, 45, 787.
Atomic Properties / Structure |
Molecular Properties / Structure |
Quantum Chemistry
Basic concepts in quantum mechanics (Kompaneyets, Alexander)  Bent, Henry A.

Bent, Henry A. J. Chem. Educ. 1967, 44, A80.
Quantum Chemistry
Mathematics for scientists. Mathematical methods in the physical sciences. Mathematics for quantum chemistry (Bak, Thor A.; Lichtenberg, Jonas; Boas, Mary L.; Anderson, Jay Martin)  Moore, Walter J.

Moore, Walter J. J. Chem. Educ. 1967, 44, 246.
Mathematics / Symbolic Mathematics |
Quantum Chemistry |
Enrichment / Review Materials
Atomic orbitals: Limitations and variations  Cohen, Irwin; Bustard, Thomas
The three most widely used methods of arriving at a set of atomic orbitals afford respective hydrogen-like orbitals, self-consistent field orbitals, and various analytical approximations such as the Slater or Morse orbitals, all of which may differ greatly in shape and size from each other.
Cohen, Irwin; Bustard, Thomas J. Chem. Educ. 1966, 43, 187.
Atomic Properties / Structure |
Quantum Chemistry
A molecular spectral corroboration of elementary operator quantum mechanics  Gerkin, Roger E.
This experiment has been prepared especially for first year students and assumed no prior familiarity with either theory or practice of spectrophotometry.
Gerkin, Roger E. J. Chem. Educ. 1965, 42, 490.
Quantum Chemistry |
Spectroscopy
Behavior of electrons in atoms: Structure, spectra, and photochemistry of atoms (Hochstrasser, Robin M.)  Gregory, N. W.

Gregory, N. W. J. Chem. Educ. 1965, 42, 62.
Atomic Properties / Structure |
Photochemistry |
Spectroscopy |
Quantum Chemistry
The language of quantum mechanics  Maybury, Robert H.
Presents background material for teaching students important concepts regarding quantum mechanics that forms the basis of much of chemistry.
Maybury, Robert H. J. Chem. Educ. 1962, 39, 367.
Quantum Chemistry