TIGER

Journal Articles: 40 results
A New "Bottom-Up" Framework for Teaching Chemical Bonding  Tami Levy Nahum, Rachel Mamlok-Naaman, Avi Hofstein, and Leeor Kronik
This article presents a general framework for bonding that can be presented at different levels of sophistication depending on the student's level and needs. The pedagogical strategy for teaching this model is a "bottom-up" one, starting with basic principles and ending with specific properties.
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Kronik, Leeor. J. Chem. Educ. 2008, 85, 1680.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Materials Science |
MO Theory |
Noncovalent Interactions
News from the Periodic Table: An Introduction to "Periodicity Symbols, Tables, and Models for Higher-Order Valency and Donor–Acceptor Kinships"  Henry A. Bent and Frank Weinhold
Proposes that alternative display topologies such as a 2D "left-step" or "step-pyramid" table or 3D "periodic towers" can supplement or supplant the standard periodic table by better emphasizing higher-order patterns of chemical association and reactivity, rather than the physical resemblances of standard-state elemental substances.
Bent, Henry A.; Weinhold, Frank. J. Chem. Educ. 2007, 84, 1145.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Spectroscopy
The Place of Zinc, Cadmium, and Mercury in the Periodic Table  William B. Jensen
Explanation for why the zinc group belongs with the main group elements; includes several versions of periodic tables.
Jensen, William B. J. Chem. Educ. 2003, 80, 952.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Descriptive Chemistry |
Atomic Properties / Structure
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends  Kimberley A. Waldron, Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson
Using charge shielding to identify and explain trends within the periodic table.
Waldron, Kimberley A.; Fehringer, Erin M.; Streeb, Amy E.; Trosky, Jennifer E.; Pearson, Joshua J. J. Chem. Educ. 2001, 78, 635.
Periodicity / Periodic Table |
Theoretical Chemistry |
Atomic Properties / Structure
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
The Genius of Slater's Rules  James L. Reed
With only a few modifications a procedure has been developed that yields the one-electron energies for atoms and ions with a level of detail very well suited for instruction in the structure and properties of atoms. It provides for the computation of very reasonable values for such properties as ionization energies, electron affinities, promotion energies, electronic transitions, and even XPS and ESCA spectra.
Reed, James L. J. Chem. Educ. 1999, 76, 802.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Spectroscopy
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Atomic and Molecular Structure in Chemical Education: A Critical Analysis from Various Perspectives of Science Education  Georgios Tsaparlis
The perspectives employed in this paper are (i) the Piagetian developmental perspective, (ii) the Ausbelian theory of meaningful learning, (iii) the information processing theory, and (iv) the alternative conceptions movement. The implications for teaching and curriculums are discussed.
Tsaparlis, Georgios. J. Chem. Educ. 1997, 74, 922.
Learning Theories |
Atomic Properties / Structure |
Molecular Properties / Structure |
Constructivism
The Periodic Table of Atoms: Arranging the Elements by a Different Set of Rules  Treptow, Richard S.
The periodic table found in this paper is based on the properties of free gaseous atoms rather than atoms in a chemical environment.
Treptow, Richard S. J. Chem. Educ. 1994, 71, 1007.
Periodicity / Periodic Table |
Atomic Properties / Structure
Transition Metals and the Aufbau Principle  Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D.
Explanation of why the ground state configuration of the neutral transition metals is in most cases 3dn4s2, and why the ground state configuration of the corresponding ions is obtained by preferentially removing the 4s electrons.
Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D. J. Chem. Educ. 1994, 71, 469.
Transition Elements |
Metals |
Atomic Properties / Structure
On Using Incomplete Theories as Cataloging Schemes: Aufbau, Abbau, and VSEPR  Tykodi, R. J.
How to restructure as cataloging schemes the aufbau and abbau procedures for obtaining the ground-state electronic structures of atoms and monatomic ions.
Tykodi, R. J. J. Chem. Educ. 1994, 71, 273.
VSEPR Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Properties / Structure
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Understanding electron configurations   Rieck, David F.
The author has successfully employed an analogy for understanding electron configurations recommended for use in secondary schools as well as in nonmajor sections of college general chemistry.
Rieck, David F. J. Chem. Educ. 1990, 67, 398.
Atomic Properties / Structure |
Nonmajor Courses
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Ammonium hydroxide does not exist  Yoke, John
No matter how the s and three p orbitals are hybridized, nitrogen can form a maximum of only four bonds.
Yoke, John J. Chem. Educ. 1989, 66, 310.
Atomic Properties / Structure |
Molecular Properties / Structure
Periodic contractions among the elements: Or, on being the right size  Mason, Joan
Contraction across the row, irregularities in the build up of the periodic table, the second row anomaly relativistic contraction and expansion among the heavier elements, post-transition anomaly, periodicities of physicochemical properties.
Mason, Joan J. Chem. Educ. 1988, 65, 17.
Descriptive Chemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure
The Heisenberg uncertainty principle: An application to the shell structure of atoms and orbit descriptions of molecules  Hartcourt, Richard D.
A further novel use of the uncertainty principle to deduce the 2n2 shell occupancy rule for atoms.
Hartcourt, Richard D. J. Chem. Educ. 1987, 64, 1070.
Atomic Properties / Structure
Should orbitals be x-rated in beginning chemistry courses?  Bent, Henry A.
Memorizing orbital rules helps students earn credits in science without knowing what science is.
Bent, Henry A. J. Chem. Educ. 1984, 61, 421.
Atomic Properties / Structure
A visual aid to demonstrate the VSEPR theory  Meloan, Cliff E.
Using a clear globe and magnets to demonstrate the VSEPR theory.
Meloan, Cliff E. J. Chem. Educ. 1980, 57, 668.
Atomic Properties / Structure |
VSEPR Theory
Electron affinity. The zeroth ionization potential  Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C.
It is the purpose of this article to present the merits of adopting the terminology zeroth ionization potential to describe the energy change that occurs when a gaseous anion loses an electron.
Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C. J. Chem. Educ. 1973, 50, 487.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Nuclear concepts as part of the undergraduate chemistry curriculum  Caretto, A. A., Jr.; Sugihara, T. T.
It is proposed that there are distinct advantages to a freshman curriculum that introduces nuclear concepts simultaneously with the discussion of analogous atomic and molecular concepts.
Caretto, A. A., Jr.; Sugihara, T. T. J. Chem. Educ. 1970, 47, 569.
Nuclear / Radiochemistry |
Atomic Properties / Structure
Interpretation of oxidation-reduction  Goodstein, Madeline P.
Presents an interpretation of the oxidation number system based upon the electronegativity principle, thus removing the adjective "arbitrary" frequently found in the descriptions of oxidation number.
Goodstein, Madeline P. J. Chem. Educ. 1970, 47, 452.
Oxidation / Reduction |
Oxidation State |
Atomic Properties / Structure |
Reactions
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Molecular models featuring molecular orbitals  Brumlik, George C.
Molecular models have been constructed that attempt to represent atomic and molecular orbitals as accurately as the current theories of valence and pertinent experimental evidence permit.
Brumlik, George C. J. Chem. Educ. 1961, 38, 502.
Molecular Modeling |
Atomic Properties / Structure |
MO Theory
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
The structure of the nucleus  Flowers, B. H.
Describes the liquid drop, shell, and optical models of the atomic nucleus.
Flowers, B. H. J. Chem. Educ. 1960, 37, 610.
Atomic Properties / Structure
Atomic models in teaching chemistry  Sanderson, R. T.
Contains directions for constructing and using atomic models for instructional purposes.
Sanderson, R. T. J. Chem. Educ. 1960, 37, 307.
Atomic Properties / Structure
Valence: A laboratory exercise for general chemistry  Sanderson, R. T.
In this exercise, each student carefully examines each of a set of thirteen different atomic models with different valence configurations, writing down certain pertinent observations and independently-reasoned conclusions about them.
Sanderson, R. T. J. Chem. Educ. 1960, 37, 261.
Atomic Properties / Structure
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
A schematic representation of valence  Sanderson, R. T.
This paper describes a new chart representing the valence structure of atoms; by studying this chart, with the help of a few simple rules, students of elementary chemistry can acquire a useful understanding of chemical combination.
Sanderson, R. T. J. Chem. Educ. 1958, 35, 541.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Enrichment / Review Materials |
Transition Elements |
Metals |
Nonmetals
Lone pair electrons  Fowles, Gerald W. A.
The lone pair electrons, whether in simple or hybrid orbitals, have profound effects on the properties of the molecule; these effects may be discussed as bond angles, dipole moments, bond energies and lengths, and coordination and hydrogen bonding.
Fowles, Gerald W. A. J. Chem. Educ. 1957, 34, 187.
Atomic Properties / Structure |
Covalent Bonding |
Coordination Compounds |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
A new periodic chart with electronegativities  Sanderson, R. T.
This paper describes a new chart that has been designed to portray clearly and vividly patterns in relative atomic radius, electronic configuration, and electronegativity.
Sanderson, R. T. J. Chem. Educ. 1956, 33, 443.
Periodicity / Periodic Table |
Atomic Properties / Structure
Regularities among the representative elements: The "paired electron rule"  Condon, F. E.
If the oxidation states characteristic of various groups are correlated in terms of electron subshells, they become reasonable and logical rather than mere facts to be memorized.
Condon, F. E. J. Chem. Educ. 1954, 31, 651.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Oxidation State
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases
The periodic table: The 6d-5f mixed transition group  Coryell, Charles D.
With relatively few modifications, the Bohr-type periodic table presented by Glocker and Popov can be made to reflect more instructively the rather complex relationships obtained in the neighborhood of the 4f or gadolinium transition group and, more importantly, in the 6d-5f sequence extending from actinium through the region of uranium and the synthetic earths to element 103.
Coryell, Charles D. J. Chem. Educ. 1952, 29, 62.
Periodicity / Periodic Table |
Transition Elements |
Atomic Properties / Structure
Valency and the periodic table  Glockler, George; Popov, Alexander I.
Presents a modification of the Bohr-Thomsen-Akhumov periodic table stressing patterns to found among the rare earth elements.
Glockler, George; Popov, Alexander I. J. Chem. Educ. 1951, 28, 212.
Periodicity / Periodic Table |
Oxidation State |
Transition Elements |
Atomic Properties / Structure