TIGER

Journal Articles: 34 results
The Origins of the Symbols A and Z for Atomic Weight and Number  William B. Jensen
Traces the origins of the symbols A and Z for atomic weight and atomic number.
Jensen, William B. J. Chem. Educ. 2005, 82, 1764.
Nuclear / Radiochemistry |
Periodicity / Periodic Table
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics Revisited (about J. Chem. Educ. 1998, 75, 998-1003)  James E. Sturm
Estimation of temperatures in heaven and hell based on biblical information.
Sturm, James E. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics |
Atomic Properties / Structure |
Kinetics |
Nuclear / Radiochemistry
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics  Kent J. Crippen and Robert D. Curtright
A four-part activity utilizing a graphing calculator to investigate nuclear stability is described. Knowledge acquired through the activity provides background for answering the societal question of using nuclear materials for energy production.
Crippen, Kent J.; Curtright, Robert D. J. Chem. Educ. 1998, 75, 1434.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Chemometrics
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics  I. A. Leenson
The paper presents a way for students to use data from Rutherford's works (1908 - 1911) in order to determine one of the most precise values of Avogadro Constant available at the beginning of the century.
Leenson, I. A. J. Chem. Educ. 1998, 75, 998.
Learning Theories |
Nuclear / Radiochemistry |
Kinetics
Moseley's Work on X-Rays and Atomic Number  C. W. Haigh
Explanation of the relationship between Moseley's work in determining atomic numbers, the spectrum of the hydrogen atom, the Bohr theory, and Slater's rules for screening constants.
Haigh, C. W. J. Chem. Educ. 1995, 72, 1012.
Enrichment / Review Materials |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Quantum Chemistry
Nuclear Shapes: From the Mundane to the Exotic  Yates, Steven W.
The shape and stability of atomic nuclei.
Yates, Steven W. J. Chem. Educ. 1994, 71, 837.
Nuclear / Radiochemistry |
Atomic Properties / Structure
Argon-potassium atomic weight inversion in the periodic table.  Arnikar, H. J.
An explanation for the Ar-K inversion in terms of the nuclear characteristics of the naturally occurring isotopes of these elements.
Arnikar, H. J. J. Chem. Educ. 1992, 69, 687.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Geochemistry |
Isotopes
Rutherford: Exploring the scattering of alpha particles.  Rittenhouse, Robert C.
This simulation permits students to design and implement scattering experiments of the sort performed by Rutherford, Geiger, and Marsden.
Rittenhouse, Robert C. J. Chem. Educ. 1992, 69, 637.
Atomic Properties / Structure
Simulation of Rutherford's experiment  Bishop, Carl B.
Apparatus and procedure to simulate Rutherford's classic gold foil experiment.
Bishop, Carl B. J. Chem. Educ. 1990, 67, 889.
Atomic Properties / Structure
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
A student experiment to demonstrate the energy loss and straggling of electrons in matter  de Bruin, M.; Huijgen, F. W. J.
The experiment described has been applied routinely for several years in introductory courses in the application of radiation and isotopes. The results obtained give direct insight into the characteristics of the phenomena associated with the absorption of energetic electrons in matter.
de Bruin, M.; Huijgen, F. W. J. J. Chem. Educ. 1990, 67, 86.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Isotopes
The discovery of the electron, proton, and neutron  Peake, Barrie M.
Brief history of the discovery of the electron, proton, and neutron.
Peake, Barrie M. J. Chem. Educ. 1989, 66, 738.
Atomic Properties / Structure
The historic atom: From d to q  Smith, Richard
A Styrofoam model of the atom that has been used to show middle and high school students the historical development of the atomic model.
Smith, Richard J. Chem. Educ. 1989, 66, 637.
Atomic Properties / Structure
Nuclear chemistry: Include it in your curriculum  Atwood, Charles H.; Sheline, R. K.
This article takes a look at some of the topics that might be included in a nuclear chemistry section of your chemistry course.
Atwood, Charles H.; Sheline, R. K. J. Chem. Educ. 1989, 66, 389.
Nuclear / Radiochemistry
Bowling balls and beads: A concrete analogy to the Rutherford experiment   Lorenz, Mary V.
Visual suggestions for understanding the design of the Rutherford experiment.
Lorenz, Mary V. J. Chem. Educ. 1988, 65, 1082.
Atomic Properties / Structure
Radioactive dating: A method for geochronology  Rowe, M. W.
The discovery of radioactivity, radioactive dating, and various dating methods.
Rowe, M. W. J. Chem. Educ. 1985, 62, 580.
Geochemistry |
Nuclear / Radiochemistry |
Isotopes |
Mass Spectrometry
A simulation of Rutherford experiment  Hau, Kit-Tai
An overhead demonstration simulating Rutherford's experiment to detect the atomic nucleus.
Hau, Kit-Tai J. Chem. Educ. 1982, 59, 973.
Atomic Properties / Structure |
Nuclear / Radiochemistry
Presenting the Bohr atom  Haendler, Blanca L.
A more significant consideration of the role of the Bohr theory in the development of quantum mechanics would have many benefits for introductory and advanced chemistry classes.
Haendler, Blanca L. J. Chem. Educ. 1982, 59, 372.
Atomic Properties / Structure |
Quantum Chemistry
Developing models: What is the atom really like?  Records, Roger M.
Using physical and computer models to illustrate historical changes in our view of the atom.
Records, Roger M. J. Chem. Educ. 1982, 59, 307.
Atomic Properties / Structure |
Quantum Chemistry
Nuclear Energy  Mickey, Charles D.
A brief summary of the history and key concepts of nuclear energy.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 360.
Nuclear / Radiochemistry
Elemental evolution and isotopic composition  Rydberg, J.; Choppin, G. R.
Reviews elemental abundances and the processes of elemental creation.
Rydberg, J.; Choppin, G. R. J. Chem. Educ. 1977, 54, 742.
Astrochemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Isotopes |
Nuclear / Radiochemistry |
Geochemistry
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
Nuclear concepts as part of the undergraduate chemistry curriculum  Caretto, A. A., Jr.; Sugihara, T. T.
It is proposed that there are distinct advantages to a freshman curriculum that introduces nuclear concepts simultaneously with the discussion of analogous atomic and molecular concepts.
Caretto, A. A., Jr.; Sugihara, T. T. J. Chem. Educ. 1970, 47, 569.
Nuclear / Radiochemistry |
Atomic Properties / Structure
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P.
(1) Is there more to nuclear stability than only the neutron to proton ration? - answer by Choppin. (2) What are the products generated by the electrolysis of molten potassium nitrate with stainless steel electrodes? - answer by Young.
Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P. J. Chem. Educ. 1970, 47, 73.
Nuclear / Radiochemistry |
Isotopes |
Atomic Properties / Structure |
Electrochemistry
Atomic Structure. Radioactivity. B. Nuclear Phenomena: Radioactivity  Surina, Albert A.; Alyea, Hubert N.
Demonstration include the use of an electroscope and Geiger counter in measuring radioactivity and the formation of fog in an evacuated bottle.
Surina, Albert A.; Alyea, Hubert N. J. Chem. Educ. 1967, 44, A545.
Atomic Properties / Structure |
Nuclear / Radiochemistry
The science study series. Volumes 12 and 18  Kieffer, William F.

Kieffer, William F. J. Chem. Educ. 1961, 38, 588.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Water / Water Chemistry
Nuclear and radiochemistry in the curriculum in general chemistry  Garrett, A. B.
The author summarizes how he integrates nuclear and radiochemistry into the general chemistry curriculum.
Garrett, A. B. J. Chem. Educ. 1960, 37, 384.
Nuclear / Radiochemistry |
Isotopes
Atomic-weight variations in nature  Boggs, James E.
Atoms of the same element may have different masses (due to isotopic differences) depending on their source.
Boggs, James E. J. Chem. Educ. 1955, 32, 400.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Isotopes
A continuous cloud chamber  Kuehner, A. L.
Details the construction and use of a continuous cloud chamber.
Kuehner, A. L. J. Chem. Educ. 1952, 29, 511.
Laboratory Equipment / Apparatus |
Nuclear / Radiochemistry