TIGER

Journal Articles: 27 results
Determining the Pressure inside an Unopened Carbonated Beverage  Hans de Grys
Determining the pressure of carbon dioxide inside a sealed soft drink can represents a challenging student exercise. Several methods are discussed for solving the problem, including applying the ideal gas law, gas collection via water displacement, and Henry's law.
de Grys, Hans. J. Chem. Educ. 2007, 84, 1117.
Applications of Chemistry |
Aqueous Solution Chemistry |
Consumer Chemistry |
Food Science |
Gases |
Solutions / Solvents |
Student-Centered Learning
Concentration Scales for Sugar Solutions  David W. Ball
Examines several special scales used to indicate the concentration of sugar solutions and their application to industry.
Ball, David W. J. Chem. Educ. 2006, 83, 1489.
Nomenclature / Units / Symbols |
Food Science |
Solutions / Solvents
Improving Conceptions in Analytical Chemistry: ci Vi = cf Vf  Margarita Rodríguez-López and Arnaldo Carrasquillo Jr.
A common misconception related to analytical chemistry, which may be generalized as the failure to recognize and to account analytically for changes in substance density, is discussed. A cautionary example is made through the use of mass-based units of composition during volumetric dilution. The correct application of the volumetric dilution equation ci Vi = cf Vf is discussed. A quantitative description of the systematic error introduced by incorrect use of the volumetric dilution equation is also specified.
Rodríguez-López, Margarita; Carrasquillo, Arnaldo, Jr. J. Chem. Educ. 2005, 82, 1327.
Industrial Chemistry |
Nomenclature / Units / Symbols |
Quantitative Analysis |
Solutions / Solvents
Well Wishes. A Case on Septic Systems and Well Water Requiring In-Depth Analysis and Including Optional Laboratory Experiments  Mary M. Walczak and Juliette M. Lantz
This paper describes the use of a case study to teach introductory chemistry students the chemical principles of solution concentration (especially ppm) and dilution, aqueous redox reactions, and stoichiometric conversions between different solution species.
Walczak, Mary M.; Lantz, Juliette M. J. Chem. Educ. 2004, 81, 218.
Consumer Chemistry |
Water / Water Chemistry |
Solutions / Solvents |
Oxidation / Reduction |
Stoichiometry
Mole, Mole per Liter, and Molar: A Primer on SI and Related Units for Chemistry Students  George Gorin
A brief historical overview of the SI system, the concept of the mole and the definition of mole unit, the status of the liter in the metric and SI systems, and the meaning of molar and molarity.
Gorin, George. J. Chem. Educ. 2003, 80, 103.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Enrichment / Review Materials
Floating Plastics: An Initial Chemistry Laboratory Experience  Enrique A. Hughes, Helena M. Ceretti, and Anita Zalts
Students prepare a series of solutions with gradually increasing densities. Then they are given plastic samples of known and unknown composition and they estimate the densities of the samples by observing in which solutions they float and in which they sink; these densities are used to identify the plastics.
Hughes, Enrique A.; Ceretti, Helena M.; Zalts, Anita. J. Chem. Educ. 2001, 78, 522.
Nonmajor Courses |
Solutions / Solvents |
Physical Properties
An Introductory Laboratory Exercise on Solution Preparation: A Rewarding Experience  M. Rachel Wang
This exercise provides beginning students a firsthand experience in solution preparation. The format of the student handout promotes active learning in the laboratory by having text and questions interspersed among laboratory procedures. Students are motivated to prepare solutions for the fascinating Briggs-Rauscher oscillation reaction and the exercise involves a variety of situations commonly encountered in solution preparation.
Wang, M. Rachel. J. Chem. Educ. 2000, 77, 249.
Solutions / Solvents
General chemistry lab time to learn solutions   Marino, Francis.
Concern over the number of upper-division students who come to lab unable to prepare solutions.
Marino, Francis. J. Chem. Educ. 1993, 70, 407.
Solutions / Solvents
An experiment on the molar solubility and solubility product of barium nitrate  Wruck, Betty; Reinstein, Jesse
A direct gravimetric method for determining a Ksp value.
Wruck, Betty; Reinstein, Jesse J. Chem. Educ. 1989, 66, 515.
Solutions / Solvents |
Precipitation / Solubility |
Gravimetric Analysis
A general approach for teaching hydrolysis of salts  Aquirre-Ode, Fernando
Proposes a general, rigorous, and relatively simple approach for the hydrolysis of 1-1 electrolytes.
Aquirre-Ode, Fernando J. Chem. Educ. 1987, 64, 957.
Acids / Bases |
Aqueous Solution Chemistry |
Solutions / Solvents
Simple determination of Henry's law constant for carbon dioxide  Levy, Jack B.; Hornack, Fred M.; Levy, Matthew A.
With the aid of inexpensive pressure gauges available from automotive supply stores, the solubility of carbon dioxide in carbonated beverages or other solutions can be studied.
Levy, Jack B.; Hornack, Fred M.; Levy, Matthew A. J. Chem. Educ. 1987, 64, 260.
Gases |
Solutions / Solvents
The definition and symbols for the quantity called "molarity" or "concentration" and for the SI units of this quantity  Gorin, George
An alternative formulation for concentration and the SI units for this quantity.
Gorin, George J. Chem. Educ. 1985, 62, 741.
Nomenclature / Units / Symbols |
Solutions / Solvents
Chemical storage of solar energy using an old color change demonstration  Spears, L. Gene, Jr.; Spears, Larry G.
The results of a student research project that could be used as an experiment to illustrate the potential of hydrates salts for solar energy storage.
Spears, L. Gene, Jr.; Spears, Larry G. J. Chem. Educ. 1984, 61, 252.
Photochemistry |
Coordination Compounds |
Solutions / Solvents |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry
Determination of ammonia in household cleaners: an instrumental analysis experiment  Graham, Richard C.; DePew, Steven
This popular experiment describes a procedure that is easily modified to determine quantitatively such analytes as ammonia in solution.
Graham, Richard C.; DePew, Steven J. Chem. Educ. 1983, 60, 765.
Quantitative Analysis |
Titration / Volumetric Analysis |
Acids / Bases |
pH |
Consumer Chemistry |
Stoichiometry |
Solutions / Solvents
Solubility and Ksp of calcium sulfate: a general chemistry laboratory experiment  Sawyer, Albert K.
The experiment shared in this note can be used to accompany lectures on solubility or chemical equilibrium.
Sawyer, Albert K. J. Chem. Educ. 1983, 60, 416.
Solutions / Solvents |
Aqueous Solution Chemistry |
Equilibrium
A novel classification of concentration units  MacCarthy, Patrick
Concentration units can be a source of confusion for students. This article presents a treatment on this topic that may help students understand the differences between these units.
MacCarthy, Patrick J. Chem. Educ. 1983, 60, 187.
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
On the use of intravenous solutions to teach some principles of solution chemistry  Shapiro, Irwin L.
A series of laboratory periods are devoted to the chemistry of intravenous solution in a one-semeter course for nursing students.
Shapiro, Irwin L. J. Chem. Educ. 1982, 59, 725.
Solutions / Solvents |
Nonmajor Courses |
Medicinal Chemistry
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Simple practical lab test for freshman students  Jones, Mark M.
Uses the preparation of a solution of designated molarity as a test of student competence; the solution is evaluated using its optical density.
Jones, Mark M. J. Chem. Educ. 1977, 54, 178.
Solutions / Solvents
Chemical equilibrium  Burke, Barbara A.
Demonstrates the equilibrium between blue CuSO4 and green K2(CuBr4) on an overhead projector.
Burke, Barbara A. J. Chem. Educ. 1977, 54, 29.
Equilibrium |
Solutions / Solvents |
Aqueous Solution Chemistry
Flashy solutions  Riley, John T.
Demonstrations using universal indicator.
Riley, John T. J. Chem. Educ. 1977, 54, 29.
Solutions / Solvents |
Acids / Bases |
Dyes / Pigments
Precipitation of lead chromate from homogeneous solution. A lecture demonstration or laboratory experiment  Ramette, Richard W.
Both the "conventional precipitation" and the precipitation from homogeneous solution are done simultaneously so that the striking differences in chemistry, appearance, and precipitate produced can be compared.
Ramette, Richard W. J. Chem. Educ. 1972, 49, 270.
Precipitation / Solubility |
Solutions / Solvents
Are solubilities and solubility products related?  Meites, Louis; Prode, J. S. F.; Thomas, Henry C.
The relation between solubilities and solubility products is far less intimate than is stated or implied by introductory texts and the ideas and calculations involved are too complex for presentation on the elementary level.
Meites, Louis; Prode, J. S. F.; Thomas, Henry C. J. Chem. Educ. 1966, 43, 667.
Solutions / Solvents |
Precipitation / Solubility
Solvent effect on the keto-enol equilibrium of acetoacetic ester  Lockwood, Karl L.
The purpose of the investigation is to introduce students to some of the factors that influence an equilibrium constant.
Lockwood, Karl L. J. Chem. Educ. 1965, 42, 481.
Solutions / Solvents |
Equilibrium
A temperature-independent concentration unit  Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr.
Describes a new system of concentration, termed molicity by the authors.
Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr. J. Chem. Educ. 1965, 42, 420.
Nomenclature / Units / Symbols |
Solutions / Solvents
Letters to the editor  Hall, Arthur C.
The molality-molarity paradox presented in an earlier article is artificial rather than apparent.
Hall, Arthur C. J. Chem. Educ. 1959, 36, 584.
Stoichiometry |
Solutions / Solvents |
Nomenclature / Units / Symbols
A molality-molarity paradox?  Toby, Sidney
The author points out that there seems no obvious reason why molality could not equal molarity in a solution whose density is less than unity.
Toby, Sidney J. Chem. Educ. 1959, 36, 230.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry