Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
4 Videos
7 Assessment Questions
73 Journal Articles
13 Other Resources
Videos: First 3 results
Polyurethane Foam in Micro Gravity  
Polyurethane foam is formed in micro gravity (NASA Reduced Gravity Program).
Metallocene Catalyzed Polymerization of Ethylene  
Polymerization chemistry is demonstrated by the reaction between ethylene and a Ziegler-Natta catalyst.
Polymerization |
Catalysis |
Formaldehyde Copolymers  
Formaldehyde Copolymers
Electrophilic Substitution |
Phenols |
View all 4 results
Assessment Questions: First 3 results
Special_Topics : BiopolyFromMonomer (20 Variations)
Match each of the following biomolecules to the type of biopolymer it will form.
Special_Topics : CondAddMonomers (19 Variations)
Which of the following compounds are more likely to be a part of an addition polymer? (Make sure you can see all of all three structures.)

Special_Topics : Copolymerization (20 Variations)
Identify the polymer produced from the polymerization of glycolic acid.

View all 7 results
Journal Articles: First 3 results.
Construction of a Polyaniline Nanofiber Gas Sensor  Shabnam Virji, Bruce H. Weiller, Jiaxing Huang, Richard Blair, Heather Shepherd, Tanya Faltens, Philip C. Haussmann, Richard B. Kaner, and Sarah H. Tolbert
The objectives of this lab are to synthesize different diameter polyaniline nanofibers and compare them as sensor materials. Its advantages include simplicity and low cost, making it suitable for both high school and college students, particularly in departments with modest means.
Virji, Shabnam; Weiller, Bruce H.; Huang, Jiaxing; Blair, Richard; Shepherd, Heather; Faltens, Tanya; Haussmann, Philip C.; Kaner, Richard B.; Tolbert, Sarah H. J. Chem. Educ. 2008, 85, 1102.
Acids / Bases |
Aromatic Compounds |
Conductivity |
Hydrogen Bonding |
Oxidation / Reduction |
Oxidation State |
pH |
Polymerization |
Ring-Opening Polymerization of Lactide To Form a Biodegradable Polymer  Jennifer L. Robert and Katherine B. Aubrecht
In this laboratory, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide. As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be used to demonstrate reactions of carboxylic acid derivatives.
Robert, Jennifer L.; Aubrecht, Katherine B. J. Chem. Educ. 2008, 85, 258.
Esters |
Green Chemistry |
NMR Spectroscopy |
Polymerization |
Refractive Index Determination of Transparent Polymers: Experimental Setup for Multi-Wavelength Determination and Calculation at Specific Frequencies Using Group Contribution Theory  Jay Dlutowski, Andres M. Cardenas-Valencia, David Fries, and Larry Langebrake
A simple lab that clearly shows the dependence of light reflection on the angle of incidence for transparent polymers is described. Light transmission measurements are used to determine the reflection magnitude and the refractive index of the material.
Dlutowski, Jay; Cardenas-Valencia, Andres M.; Fries, David; Langebrake, Larry. J. Chem. Educ. 2006, 83, 1867.
Physical Properties |
Polymerization |
UV-Vis Spectroscopy
View all 73 articles
Other Resources: First 3 results
Addition Polymers  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Condensation Polymers  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Copoly; A Tool for Understanding Copolymerization and Monomer Sequence Distribution of Copolymers  Massoud Miri, Juan A. Morales-Tirado
The study of the composition and monomer sequence distribution of binary copolymers is often complicated because of the many definitions of representative properties for the sequence distribution, the numerous calculations required, and occasionally the abstract treatment of the statistical processes describing the copolymer formation. Copoly resolves these issues with a user-friendly, highly visual interface to perform all calculations. Using Microsoft Excel and Word, Copoly is compatible with Windows and Mac OS. In Copoly the students enter up to five independent data parameters using the Data Input Window, and immediately see the results. To obtain diagrams for a copolymerization obeying a second-order Markovian process, the fraction of one monomer, A, and the reactivity ratios, rA, rB, rA´ and rB´ need to be entered; for a first-order Markovian process only the first three of these are required. For a Bernoullian- or zeroth-order Markovian process only A and rA are required. The results are displayed on separate sheets labeled: 1. Copolymerization Diagrams, 2. Dyads and Triads, 3. Sequence Length Distribution, 4. Simulated Copolymer Design, and 5. Summary.
View all 13 results