TIGER

Journal Articles: 34 results
Catalytic Hydrogenation of Maleic Acid at Moderate Pressures  Kwesi Amoa
This article demonstrates the reduction of maleic acid in about 90 minutes using moderate-pressure catalytic hydrogenation.
Amoa, Kwesi. J. Chem. Educ. 2007, 84, 1948.
Alkenes |
Catalysis |
Chromatography |
IR Spectroscopy |
Laboratory Equipment / Apparatus |
Spectroscopy |
Thin Layer Chromatography
Quantitative Measurement of Trans-Fats by Infrared Spectroscopy  Edward B. Walker, Don R. Davies, and Mike Campbell
FTIR-ATR spectroscopy provides an efficient analytical tool to measure the percentage of trans-fat in several commercially available lipids and the degree of alkene isomerization induced by brominationdebromination chemical reactions.
Walker, Edward B.; Davies, Don R.; Campbell, Mike. J. Chem. Educ. 2007, 84, 1162.
Alkenes |
Calibration |
Food Science |
Instrumental Methods |
IR Spectroscopy |
Lipids |
Quantitative Analysis |
Fatty Acids
Stereospecific Synthesis of the Geometrical Isomers of a Natural Product  T. Grove, D. DiLella, and E. Volker
Presents an experiment for the synthesis of (Z) and (E) isomers that is presented to students as a puzzle in which they must determine the identity of the major component in anise oil. A necessary part of the analysis is the preparation the (E) and (Z) isomers of anethole. Molecular modeling is used to explore the conformation of and energy difference between isomers.
Grove, T.; DiLella, D.; Volker, E. J. Chem. Educ. 2006, 83, 1055.
Alkenes |
Computational Chemistry |
Gas Chromatography |
IR Spectroscopy |
NMR Spectroscopy |
Stereochemistry |
Synthesis
Ozonolysis Problems That Promote Student Reasoning  Ray A. Gross Jr.
The structural features inherent in acyclic monoterpenes that follow the isoprene rule often lead to unique sets of ozonolysis products from which their structures, excluding stereochemistry, can be determined from molecular formulas only. This article shows how students may elucidate the structures of these compounds by analysis of the oxidative and reductive workup products.
Gross, Ray A., Jr. J. Chem. Educ. 2006, 83, 604.
Aldehydes / Ketones |
Alkenes |
Alkynes |
Carboxylic Acids |
Oxidation / Reduction |
Student-Centered Learning
Cis and Trans Isomers of Cycloalkenes  Susan E. Barrows and Thomas H. Eberlein
The purpose of this article is to provide that analysis. In order for a cycloalkene to accommodate a trans double bond one or more of the following nonideal geometries must occur: a twisted p bond; pyramidal sp2-carbon atoms; nonideal sp3 bond angles; or longer than normal CC single and double bonds. This article provides a list of experimentally determined relative energies of the cis and trans isomers within the series cycloheptenecycloundecene, along with computationally derived energies at several levels of theory. It also examines the geometric distortions through which cycloalkenes relieve the strain introduced by a trans double bond.
Barrows, Susan E.; Eberlein, Thomas H. J. Chem. Educ. 2005, 82, 1334.
Computational Chemistry |
Molecular Modeling |
Alkenes |
Diastereomers
Understanding Rotation about a C=C Double Bond  Susan E. Barrows and Thomas H. Eberlein
We present a simple method of introducing the concept of a flexible C=C pi bond into beginning organic chemistry courses. We report the energetic demands of partial twisting about the C=C bond in 2-butene as calculated using DFT, LMP2, and MCSCF methods. Finally, using the results of these calculations, we assessed the degree of strain introduced by the twisted nature of the C=C bond in trans cycloalkenes.
Barrows, Susan E.; Eberlein, Thomas H. J. Chem. Educ. 2005, 82, 1329.
Computational Chemistry |
Molecular Mechanics / Dynamics |
Molecular Modeling |
Alkenes
Cis and Trans Isomerization in Cyclic Alkenes: A Topic for Discovery Using the Results of Molecular Modeling  Susan E. Barrows and Thomas H. Eberlein
This article describes an activity in which students are led to discover the fundamental reasons behind the unusual instability of the trans isomers in medium-sized cycloalkenes by using the results of molecular modeling. Notably, students will make the unexpected discovery that twisting about p bonds is perhaps more facile than they had been led to believe.
Barrows, Susan E.; Eberlein, Thomas H. J. Chem. Educ. 2004, 81, 1529.
Covalent Bonding |
Computational Chemistry |
Molecular Modeling |
Alkenes |
Molecular Properties / Structure
Combinatorial Partial Hydrogenation Reactions of 4-Nitroacetophenone. An Undergraduate Organic Laboratory  Kevin W. Kittredge, Susan S. Marine, and Richard T. Taylor
A combinatorial organic chemistry experiment that utilizes an inexpensive commercially available parallel reactor, Argonaut's FirstMate, is described. Students perform a metal catalyzed partial hydrogenation reaction on a multi-functionalized substrate and analyze product ratios by GCMS. Students evaluate a simple organic reaction that yields four different products. The reactions are performed in the presence and absence of a reaction modifier, methanesulfonic acid. Differing product ratios are obtained with the different types of metal catalysts and with the presence or the absence of the reaction modifier.
Kittredge, Kevin W.; Marine, Susan S.; Taylor, Richard T. J. Chem. Educ. 2004, 81, 1494.
Catalysis |
Combinatorial Chemistry |
Synthesis |
Reactions
Catalytic Hydrogenation of Organic Compounds without H2 Supply: An Electrochemical System  Daniela Maria do Amaral Ferraz Navarro and Marcelo Navarro
A system for hydrogenation of organic compounds without a hydrogen gas supply is described. The process involves an electrochemical apparatus for the generation of hydrogen in situ. The simplicity of the experiment allows students to carry out easy experiments in the laboratory and the instructors to introduce the following concepts: electrochemical principles and catalytic and hydrogenation reactions. A sacrificial anode of nickel is used in the electrochemical system with a double function: to permit the use of an undivided cell and activate the cathode surface.
Navarro, Daniela Maria do Amaral Ferraz; Navarro, Marcelo. J. Chem. Educ. 2004, 81, 1350.
Catalysis |
Chromatography |
Electrochemistry |
Oxidation / Reduction
Dendrimers: Branching Out of Polymer Chemistry  Eric E. Simanek and Sergio O. Gonzalez
Addresses synthetic concepts surrounding dendrimers including the use of protecting groups, functional group interconversions, and convergent and divergent synthetic strategies.
Simanek, Eric E.; Gonzalez, Sergio O. J. Chem. Educ. 2002, 79, 1222.
Materials Science |
Synthesis |
Molecular Properties / Structure |
Addition Reactions |
Aromatic Compounds |
Alkylation |
Nucleophilic Substitution
A History of the Double-Bond Rule  Bernard E. Hoogenboom
From his experience as an industrial chemist, Otto Schmidt recognized the bond weakening in hydrocarbons and in 1932 postulated the "Double-Bond Rule," stating that the presence of a double bond in a hydrocarbon has an alternating strengthening and weakening effect on single bonds throughout the molecule, diminishing with distance from the double bond.
Hoogenboom, Bernard E. J. Chem. Educ. 1998, 75, 596.
Learning Theories |
Mechanisms of Reactions |
Alkenes
On the Disproportionations of Cyclohexene and Related Compounds  Alex Bunjes, Ingo Eilks, Manfred Pahlke, and Bernd Ralle*
The catalytic hydrogenation of liquid hydrocarbons is easy to realize in a simple laboratory experiment using a palladium catalyst. In the case of hydrogenation cyclohexen or cyclohexadiene in addition to the expected finding of cyclohexane among the hydrogenation products, the formation of benzene can be observed. In absence of hydrogen, the disproportionation of both starting materials to cyclohexane and benzene takes place.
Bunjes, Alex; Eilks, Ingo; Pahlke, Manfred; Ralle, Bernd. J. Chem. Educ. 1997, 74, 1323.
Alkanes / Cycloalkanes |
Aromatic Compounds |
Alkenes |
Synthesis
Old MacDonald Named a Compound: Branched Enynenynols  Dennis Ryan
An imaginary teacher of organic chemistry thinks up some whimsical compounds for his students to name using IUPAC nomenclature rules.
Ryan, Dennis. J. Chem. Educ. 1997, 74, 782.
Learning Theories |
Nomenclature / Units / Symbols |
Alcohols |
Alkenes |
Alkynes |
Molecular Properties / Structure
Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs  R. W. Hanson
A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction.
Hanson, R. W. J. Chem. Educ. 1997, 74, 430.
Catalysis |
Aldehydes / Ketones |
Alcohols |
Amines / Ammonium Compounds |
Mechanisms of Reactions
Selective and Quantitative Catalytic Hydrogenation: A Safe, Inexpensive Experiment for Large Classes  John A. Landgrebe
A catalytic hydrogenation experiment suitable for large classes.
Landgrebe, John A. J. Chem. Educ. 1995, 72, A220.
Catalysis |
Synthesis |
Laboratory Equipment / Apparatus |
Microscale Lab
A Simple and Safe Catalytic Hydrogenation of 4-Vinylbenzoic Acid  De, Shantanu; Gambhir, Geetu; Krishnamurty, H. G.
An alternative procedure to catalytic hydrogenation is catalytic transfer hydrogenation. In this technique, the reduction of an organic compound is achieved with the aid of a donor substance in the presence of a catalyst.
De, Shantanu; Gambhir, Geetu; Krishnamurty, H. G. J. Chem. Educ. 1994, 71, 992.
Catalysis |
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes
The electrophilic addition to alkynes  Weiss, Hilton M.
Electrophilic additions to alkynes traditionally do not receive as much attention in organic textbooks as electrophilic addition to alkenes.
Weiss, Hilton M. J. Chem. Educ. 1993, 70, 873.
Addition Reactions |
Alkynes
The catalytic hydrogenation of methyl oleate by in situ hydrogen generation  Plummer, Ben
Modification of the catalytic hydrogenation of methyl oleate into methyl stearate.
Plummer, Ben J. Chem. Educ. 1989, 66, 518.
Catalysis |
Alkenes |
Laboratory Equipment / Apparatus
The evaluation of strain and stabilization in molecules using isodesmic reactions  Fuchs, Richard
The stabilities of cyclic hydrocarbons are analyzed using isodesmic and metathetical isodesmic reactions.
Fuchs, Richard J. Chem. Educ. 1984, 61, 133.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds
Oil shale - Heir to the petroleum kingdom   Schachter, Y.
A discussion of oil shale provides students with real-world problems that require chemical literacy.
Schachter, Y. J. Chem. Educ. 1983, 60, 750.
Applications of Chemistry |
Alkenes |
Alkanes / Cycloalkanes |
Green Chemistry
Petroleum chemistry  Kolb, Doris; Kolb, Kenneth E.
The history of petroleum chemistry.
Kolb, Doris; Kolb, Kenneth E. J. Chem. Educ. 1979, 56, 465.
Natural Products |
Geochemistry |
Applications of Chemistry |
Industrial Chemistry |
Catalysis |
Polymerization
Quarternary ammonia salts: Some recent applications in organic synthesis  Varughese, Pothen
Presents a variety of applications for quarternary ammonia salts, including as reaction media, a reagent for mesylation, catalytic hydrogenation, and micellar and phase-transfer catalysis.
Varughese, Pothen J. Chem. Educ. 1977, 54, 666.
Synthesis |
Amines / Ammonium Compounds |
Micelles |
Catalysis
Murray Raney of Chattanooga and nickel catalysts  Tarbell, D. Stanley; Tarbell, Ann Tracy
Biography of Murray Raney, who received a patent in 1927 for a catalysts prepared from an alloy of nickel and aluminum.
Tarbell, D. Stanley; Tarbell, Ann Tracy J. Chem. Educ. 1977, 54, 26.
Catalysis
Syntheses and rearrangements of cage molecules related to cubane  Jefford, Charles W.
This article looks at the synthesis of cubane, basketene, miscellaneous homocubane chemistry, snoutene, triqunacene, hypostrophene, tris-homocubane, and catalysis by transition metals.
Jefford, Charles W. J. Chem. Educ. 1976, 53, 477.
Catalysis |
Transition Elements |
Alkenes |
Synthesis |
Aromatic Compounds |
Heterocycles |
Alcohols
Imidazole - Versatile today, prominent tomorrow  Matuszak, C. A.; Matuszak, A. J.
Imidazole chemistry has pedagogical utility for all the organic chemistry students pursing careers in the life sciences.
Matuszak, C. A.; Matuszak, A. J. J. Chem. Educ. 1976, 53, 280.
Grignard Reagents |
Aromatic Compounds |
Heterocycles |
Phenols |
Acids / Bases |
Catalysis |
Coordination Compounds |
Hydrogen Bonding
A new chemistry program for nursing and allied health students  Stanitski, Conrad L.; Sears, Curtis T., Jr.
Outlines and discusses the topics considered in a chemistry program for nursing and allied health students.
Stanitski, Conrad L.; Sears, Curtis T., Jr. J. Chem. Educ. 1975, 52, 226.
Nonmajor Courses |
Applications of Chemistry |
Medicinal Chemistry |
Oxidation / Reduction |
Catalysis |
Acids / Bases |
pH |
Metabolism |
Drugs / Pharmaceuticals
Catalytic hydrogenation of ketones at moderate pressures. An organic demonstration-experiment  Kaye, Irving Allan
This procedure requires a moderate pressure hydrogenator and can be completed as a demonstration or a laboratory with a small number of students.
Kaye, Irving Allan J. Chem. Educ. 1972, 49, 131.
Catalysis |
Aldehydes / Ketones
Indene reactions: An organic chemistry laboratory problem  Garrison, James A.
Students are given a problem in which they are to determine which of two published accounts of reaction products involving derivatives of idene is correct.
Garrison, James A. J. Chem. Educ. 1970, 47, 300.
Alkenes |
Alcohols
The dehydration of 3,3-dimethyl-2-butanol  Taber, Richard L.; Grantham, Gary D.; Champion, William C.
Presents an experiment that demonstrates the usefulness of gas chromatography as an analytical technique, emphasizes structural rearrangement, makes use of elementary thermodynamics, and gives the student some experience in the original literature.
Taber, Richard L.; Grantham, Gary D.; Champion, William C. J. Chem. Educ. 1969, 46, 849.
Alcohols |
Alkenes |
Gas Chromatography
Crystalline molecular sieves  Breck, D. W.
This article introduces zeolites - crystalline aluminosilicates that function as molecular sieves.
Breck, D. W. J. Chem. Educ. 1964, 41, 678.
Separation Science |
Crystals / Crystallography |
Ion Exchange |
Catalysis
Electronic configuration of metal oxides  O'Reilly, D. E.
Examines the properties of metal oxides in light of crystal field theory, covalency, catalysis, and energy bands.
O'Reilly, D. E. J. Chem. Educ. 1961, 38, 312.
Atomic Properties / Structure |
Metals |
Transition Elements |
Crystal Field / Ligand Field Theory |
Catalysis
The reduction of carbon dioxide  Hollander, Jerome; Spialter, Leonard
Examines the reduction of carbon through a variety of processes, including catalytic hydrogenation, reduction by metals and complex metal hydrides, electrochemical reduction, and reduction under the influence of radiation.
Hollander, Jerome; Spialter, Leonard J. Chem. Educ. 1958, 35, 446.
Reactions |
Oxidation / Reduction |
Catalysis |
Metals |
Electrochemistry |
Nuclear / Radiochemistry
Chemistry in the manufacture of modern gasoline  Kimberlin, C. N., Jr.
This paper presents a brief review of the chemistry involved in the manufacture of gasoline, particularly catalytic cracking reactions.
Kimberlin, C. N., Jr. J. Chem. Educ. 1957, 34, 569.
Industrial Chemistry |
Applications of Chemistry |
Catalysis |
Mechanisms of Reactions
Hyperconjugation: An elementary approach  Ferreira, Ricardo Carvalho
Presents kinetic, thermochemical, and spectroscopic evidence for hyperconjugation in organic species.
Ferreira, Ricardo Carvalho J. Chem. Educ. 1952, 29, 554.
Alkenes