TIGER

Journal Articles: 120 results
Percy Julian, Robert Robinson, and the Identity of Eserethole  Addison Ault
The Nova production Percy JulianForgotten Genius, which included the very public disagreement over the identity of "eserethole," the key intermediate for the synthesis of the alkaloid physostigmine, left three important chemical questions unanswered.
Ault, Addison. J. Chem. Educ. 2008, 85, 1524.
Constitutional Isomers |
Enantiomers |
Natural Products |
Stereochemistry |
Synthesis
Frank Westheimer's Early Demonstration of Enzymatic Specificity  Addison Ault
Reviews one of the most significant accomplishments of one of the most respected chemists of the 20th centurya series of stereospecific enzymatic oxidation and reduction experiments that led chemists to recognize enantiotopic and diastereotopic relationships of atoms, or groups of atoms, within molecules.
Ault, Addison. J. Chem. Educ. 2008, 85, 1246.
Asymmetric Synthesis |
Bioorganic Chemistry |
Catalysis |
Chirality / Optical Activity |
Enantiomers |
Enzymes |
Isotopes |
Nucleophilic Substitution |
Oxidation / Reduction |
Stereochemistry
The Resolution of Ibuprofen, 2-(4′-Isobutylphenyl)propionic Acid  James V. McCullagh
In this experiment the over-the-counter pain reliever ibuprofen is resolved using (S)-(-)-a-phenethylamine as the resolving agent. This procedure has several key advantages over previous resolution experiments.
McCullagh, James V. J. Chem. Educ. 2008, 85, 941.
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Enantiomers |
Quantitative Analysis |
Separation Science
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes  Aminou Mohamadou and Arnaud Haudrechy
This article presents a simple and progressive method to draw all of the octahedral complexes of coordination units with at least two different monodentate ligands and show their chiral properties.
Mohamadou, Aminou; Haudrechy, Arnaud. J. Chem. Educ. 2008, 85, 436.
Asymmetric Synthesis |
Chirality / Optical Activity |
Coordination Compounds |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry |
Transition Elements
Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?  Jean François LeMaréchal
Uses the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object.
LeMaréchal, Jean François. J. Chem. Educ. 2008, 85, 433.
Chirality / Optical Activity |
Coordination Compounds |
Enantiomers |
Group Theory / Symmetry |
Stereochemistry |
Transition Elements
Showing Enantiomorphous Crystals of Tartaric Acid  Julio Andrade-Gamboa
Most drawings of enantiomorphous crystals are inadequate to demonstrate that they are non-superimposable mirror images. This article examines the classic case of tartaric acid and the use of an alternative graphical representation and a paper model to facilitate the conceptualization of this subject.
Andrade-Gamboa, Julio. J. Chem. Educ. 2007, 84, 1783.
Chirality / Optical Activity |
Crystals / Crystallography |
Enantiomers |
Stereochemistry
Dynamic Stereochemistry: A Simple Approach To Delineating Relative Configuration  Dipak K. Mandal
A simple approach is presented for delineating relative stereochemistry of the product in reactions involving stereogenic center(s).
Mandal, Dipak K. J. Chem. Educ. 2007, 84, 274.
Chirality / Optical Activity |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry
Precision in Stereochemical Terminology  LeRoy G. Wade, Jr.
This article recommends that instructors use the precise terms asymmetric carbon atom and chirality center when they apply, and use the broader term stereocenter only when there is a need to include stereogenic atoms that are not chirality centers.
Wade, LeRoy G., Jr. J. Chem. Educ. 2006, 83, 1793.
Chemical Technicians |
Diastereomers |
Enantiomers |
Stereochemistry |
Nomenclature / Units / Symbols |
Chirality / Optical Activity
Mechanisms That Interchange Axial and Equatorial Atoms in Fluxional Processes: Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via Animation of Transition State Normal Vibrational Modes  Marion E. Cass, King Kuok Hii, and Henry S. Rzepa
Teaching the Berry pseudorotation mechanism presents particular pedagogic problems due to both its dynamic and three dimensional character. The approach described here illustrates these processes using interactive animations embedded in a Web page.
Cass, Marion E.; Hii, King Kuok; Rzepa, Henry S. J. Chem. Educ. 2006, 83, 336.
Computational Chemistry |
Enantiomers |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
Mechanisms of Reactions |
NMR Spectroscopy |
Nonmetals
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic ahydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
Circular Dichroism Investigation of Dess–Martin Periodinane Oxidation in the Organic Chemistry Laboratory  Nicole A. Reed, Robert D. Rapp, Christian S. Hamann, and Pamela G. Artz
Using circular dichroism, organic laboratory students investigated the change in absolute stereochemistry upon oxidation of menthol to menthone. In the first laboratory period, the oxidation was performed with DessMartin periodinane, which is a facile and less toxic oxidizing agent. Half the laboratory group performed the oxidation with ()-menthol and the other half used (+)-menthol to produce ()-menthone and (+)-menthone, respectively. The products were analyzed in the second laboratory period using infrared spectroscopy and gas chromatography/mass spectrometry to determine the fraction of starting alcohol converted to ketone. Comparison was made between CD spectra both for the menthol reactant and menthone product and for the (+)- and ()-menthone enantiomers.
Reed, Nicole A.; Rapp, Robert D.; Hamann, Christian S.; Artz, Pamela G. J. Chem. Educ. 2005, 82, 1053.
Instrumental Methods |
Molecular Properties / Structure |
Oxidation / Reduction |
Reactions |
Enantiomers
The Addition of Bromine to 1,2-Diphenylethene   Judith C. Amburgey-Peters and LeRoy W. Haynes
We investigated the reaction of (Z)-1,2-diphenylethene (cis-stilbene) with various brominating reagents and solvents following directions in standard organic chemistry manuals. We were particularly interested in learning which combination of brominating reagent and solvent gave the best yield of (d,l)-1,2-dibromo-1,2-diphenylethane without the formation of significant amounts of meso-1,2-dibromo-1,2-diphenylethane, which is essentially the sole product from the reaction of bromine with (E)-1,2-diphenylethene (trans-stilbene). Based on the results from the standard preparatory methods, some permutations of solvent and brominating reagent were tried.
Amburgey-Peters, Judith C.; Haynes, LeRoy W. J. Chem. Educ. 2005, 82, 1051.
Addition Reactions |
Alkenes |
Carbocations |
Diastereomers |
Enantiomers |
Mechanisms of Reactions |
Stereochemistry
An Engaging Illustration of the Physical Differences among Menthol Stereoisomers  Edward M. Treadwell and T. Howard Black
The differences and similarities in the physical behavior of enantiomers and diastereomers can easily be demonstrated using the commercial stereoisomers (-)-menthol, (+)-menthol, (+)-isomenthol, and (+)-neomenthol. Thin-layer chromatography and melting point determinations clearly show that diastereomers have different physical properties from enantiomers and each other, but that enantiomers have identical physical properties in achiral environments. By obtaining a mixed melting point and optical rotations the difference in enantiomers can be observed.
Treadwell, Edward M.; Black, T. Howard. J. Chem. Educ. 2005, 82, 1046.
Chirality / Optical Activity |
Stereochemistry |
Thin Layer Chromatography |
Diastereomers |
Enantiomers |
Physical Properties
Enantiomeric Resolution of (±)-Mandelic Acid by (1R,2S)-(–)-Ephedrine. An Organic Chemistry Laboratory Experiment Illustrating Stereoisomerism  Marsha R. Baar and Andrea L. Cerrone-Szakal
There has been an increasing need, particularly in the pharmaceutical industry, to prepare chiral substances in single-isomer form. A chiral technique that makes an excellent introductory organic chemistry experiment is enantiomeric resolution. The classical resolution of ()-mandelic acid using the chiral amine, (1R,2S)-()-ephedrine, was adapted for use in introductory organic chemistry lab curricula.
Baar, Marsha R.; Cerrone-Szakal, Andrea L. J. Chem. Educ. 2005, 82, 1040.
Acids / Bases |
Chirality / Optical Activity |
Separation Science |
Stereochemistry |
Diastereomers |
Enantiomers
Chirality Made Simple: A 1- and 2-Dimensional Introduction to Stereochemistry  Robert E. Gawley
Using internal and external reflection elements in one-, two-, and three-dimensional space, the concept of chirality can be introduced in simple terms that are readily understood. Illustrations of 2-D chirality include block letters of the alphabet and the popular video game Tetris. The concepts of 3-D chirality follow logically and can be simplified by projection back to 2-D. Several examples are given, and a PowerPoint presentation of the concepts is available in the Supplemental Material.
Gawley, Robert E. J. Chem. Educ. 2005, 82, 1009.
Chirality / Optical Activity |
Group Theory / Symmetry |
Stereochemistry |
Enantiomers
A Simple Illustration of Hemihedral Faces  Addison Ault
A pair of blocks is described that illustrate exactly the enantiomeric relationship that led Pasteur to the concept of molecular chirality. The blocks are enantiomeric and have C2 symmetry.
Ault, Addison. J. Chem. Educ. 2004, 81, 1605.
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
"Chiral Acetate": The Preparation, Analysis, and Applications of Chiral Acetic Acid  Addison Ault
Production of chiral acetic acid using deuterium and tritium and its application to understanding stereochemistry and the specificity of enzymatic reactions.
Ault, Addison. J. Chem. Educ. 2003, 80, 333.
Chirality / Optical Activity |
Enzymes |
Isotopes |
Synthesis |
Stereochemistry |
Enrichment / Review Materials |
Carboxylic Acids |
Enantiomers |
Reactions |
Mechanisms of Reactions
"Dishing Out" Stereochemical Principles  Harold Hart
Demonstrating the concepts of chiral centers and enantiomers using plastic dishes.
Hart, Harold. J. Chem. Educ. 2001, 78, 1632.
Chirality / Optical Activity |
Molecular Modeling |
Stereochemistry |
Molecular Properties / Structure |
Enantiomers
Demonstrating Chirality: Using a Mirror with Physical Models to Show Non-superimposability of Chiral Molecules with Their Mirror Images  Michael J. Collins
Using a mirror with physical models to show non-superimposability of chiral molecules with their mirror images.
Collins, Michael J. J. Chem. Educ. 2001, 78, 1484.
Chirality / Optical Activity |
Enantiomers |
Molecular Modeling |
Molecular Properties / Structure
Synthesis and Use of Jacobsen's Catalyst: Enantioselective Epoxidation in the Introductory Organic Laboratory  John Hanson
Laboratory series to introduce students to an important synthetic method and many common techniques used in running reactions, purifying products, and characterizing compounds.
Hanson, John. J. Chem. Educ. 2001, 78, 1266.
Catalysis |
Chirality / Optical Activity |
Synthesis |
Organometallics |
Stereochemistry |
Epoxides |
Enantiomers |
Aromatic Compounds
Pólya's Isomer Enumeration Method: A Unique Exercise in Group Theory and Combinatorial Analysis for Undergraduates  S. Pevac and G. Crundwell
The use of Plya's isomer enumeration method (IEM) to determine the number of deuterated isomers of boat cyclohexane, C6H12-xDx, is explained in detail. Determining the total number of deuterated chair cyclohexanes is left as a supplemental exercise.
Pevac, S; Crundwell, Guy. J. Chem. Educ. 2000, 77, 1358.
Group Theory / Symmetry |
Enantiomers |
Molecular Properties / Structure
Trisethylenediaminecobalt(III) Chloride Sulfate as a Subject Material for Widely Different Chemistry Lab Courses  Yoshiki Moriguchi
A new unified lab curriculum, expanded to include an organic chemistry or stereochemistry lab course using rac-tris(ethylenediamine)cobalt(III)chloridesulfate (rac-[Co(en)3]ClSO4).
Moriguchi, Yoshiki. J. Chem. Educ. 2000, 77, 1045.
Coordination Compounds |
Synthesis |
Quantitative Analysis |
Enantiomers
Enantiomeric and Diastereoisomeric Relationships: A Practical Approach  V. Durieu, G. Martiat, M. Ch. Vandergeten, F. Pirsoul, F. Toubeau, and Agnès Van Camp
An experiment in organic chemistry in which the students prepare, purify, and characterize optical isomers. The three optical isomers of the bisoxalamides obtained by the reaction of racemic 1-phenylethylamine with diethyloxalate are separable by flash chromatography into the racemic mixture of (R,R) + (S,S) oxalamides and the (R,S) meso compound.
Durieu, V.; Martiat, G.; Vandergeten, M. Ch.; Pirsoul, F.; Toubeau, F.; Van Camp, Agnès. J. Chem. Educ. 2000, 77, 752.
Molecular Properties / Structure |
Stereochemistry |
Separation Science |
Enantiomers |
Diastereomers |
Chirality / Optical Activity |
Synthesis
Catalytic Asymmetric Epoxidation Using a Fructose-Derived Catalyst  Andy Burke, Patrick Dillon, Kyle Martin, and T. W. Hanks
Modern epoxidation methods are able to create two adjacent stereocenters with very high enantioselectivity. Opening of the epoxides with nucleophiles permits rapid entry into complex organic systems, making this powerful synthetic methodology one of the fundamental reactions in organic synthesis.
Burke, Andy; Dillon, Patrick; Martin, Kyle; Hanks, Timothy W. J. Chem. Educ. 2000, 77, 271.
Catalysis |
NMR Spectroscopy |
Stereochemistry |
Enantiomers
Stereowordimers-Minding Your P's and Q's  Edward G. Neeland
The use of words having different colored sides is a excellent way to introduce stereochemical concepts that might not be easily grasped when using molecular examples. We have found that concepts such as enantiomers, diastereomers, identical molecules, chirality, achirality, mirror planes of symmetry, and internal planes of symmetry are readily understood by students when using stereowordimer examples.
Neeland, Edward G. J. Chem. Educ. 1998, 75, 1573.
Stereochemistry |
Diastereomers |
Enantiomers |
Molecular Properties / Structure
Models and Molecules - A Workshop on Stereoisomers  Robert W. Baker, Adrian V. George, and Margaret M. Harding
A molecular model workshop aimed at first year university undergraduates has been devised to illustrate the concepts of organic stereochemistry. The students build models to teach the relationship within, and between, conformational isomers, enantiomers, and diastereomers.
Baker, Robert W.; George, Adrian V.; Harding, Margaret M. J. Chem. Educ. 1998, 75, 853.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling |
Enantiomers |
Diastereomers
Resolution of Racemic Phenylsuccinic Acid Using (-)-Proline as a Resolving Agent: An Introductory Organic Chemistry Experiment  Victor Cesare and Ralph Stephani
Isolation of the (+)-enantiomer can be completed in about two hours and this procedure can also be used to introduce the reflux and recrystallization techniques.
Cesare, Victor; Stephani, Ralph. J. Chem. Educ. 1997, 74, 1226.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Separation of Enantiomeric Barbiturates by Capillary Electrophoresis Using a Cyclodextrin Containing Run Buffer  S. Contradi, Carla Vogt, and E. Rohde
This article is intended to demonstrate the potential of CE for the determination of enantiomers. The separation is based on the addition of a suitable chiral selector to the buffer. Cyclodextrins perform as excellent selectors forming diastereomeric complexes of different stability with the enantiomeric forms of the analyte.
Contradi, S.; Vogt, Carla; Rohde E. J. Chem. Educ. 1997, 74, 1122.
Drugs / Pharmaceuticals |
Electrophoresis |
Separation Science |
Stereochemistry |
Enantiomers |
Medicinal Chemistry
An Example of a Human Topological Rubber Glove Act  Yock Chai Toong and Shih Yung Wang
A hitherto unreported human body narcissistic inversion which is an example of the rubber glove act has been uncovered from a Chinese acrobatic performance. This inversion is related to the unimolecular enantiomerizations of chiral molecules, a topological figure and a rubber glove via chiral pathway.
Toong, Yock Chai; Wang, Shih Yung. J. Chem. Educ. 1997, 74, 403.
Chirality / Optical Activity |
Enantiomers |
Stereochemistry |
Aromatic Compounds
1H NMR Analysis of R/S Ibuprofen by the Formation of Diasteriomeric Pairs: Microscale Stereochemistry Experiment for the Undergraduate Organic Laboratory  Stephanie E. Sen and Keith S. Anliker
A multicomponent experiment is described which elucidates the chirality of the commercially available analgesic, ibuprofen.
Stephanie E. Sen and Keith S. Anliker. J. Chem. Educ. 1996, 73, 569.
Stereochemistry |
Enantiomers |
Drugs / Pharmaceuticals |
Diastereomers |
Gas Chromatography |
NMR Spectroscopy
When Drug Molecules Look in the Mirror  Edwin Thall
Enantiomers possess virtually identical physical properties but often display very different biological activities. Stereochemical non-equivalence, chiral recognition, enantiomer uniqueness, and the preparation of optically active drugs are reviewed.
Thall, Edwin. J. Chem. Educ. 1996, 73, 481.
Enantiomers |
Stereochemistry |
Drugs / Pharmaceuticals |
Chirality / Optical Activity
Put the Body to Them!  Perkins, Robert R.
Examples of chemistry demonstrations involving student participation, including quantized states and systems, boiling point trends, intermolecular vs. intramolecular changes, polar/nonpolar molecules, enantiomers and diastereomers, and chromatography.
Perkins, Robert R. J. Chem. Educ. 1995, 72, 151.
Chromatography |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Molecular Properties / Structure |
Chirality / Optical Activity |
Quantum Chemistry |
Diastereomers |
Enantiomers
Which Organic Molecule Should I Pick?  Perkins, Robert
Examples of questions requiring students to demonstrate their understanding of organic structures, nomenclature, isomerism, and chemical reactivity.
Perkins, Robert J. Chem. Educ. 1995, 72, 124.
Molecular Properties / Structure |
Chirality / Optical Activity |
Nomenclature / Units / Symbols |
Enantiomers |
Diastereomers
A Microscale Isolation of Limonene from Orange Peels  Garner, Charles M.; Garibaldi, Chad
A rapid and reliable extractive microscale isolation of limonene.
Garner, Charles M.; Garibaldi, Chad J. Chem. Educ. 1994, 71, A146.
Microscale Lab |
Separation Science |
Natural Products |
Gas Chromatography |
IR Spectroscopy |
Enantiomers
Microscale yeast mediated enantiospecific reduction of vanillin, and the absolute configuration of (-)-(R)-[alpha]-deuteriovanillyl alcohol: A bioorganic chemistry experiment   Lee, Moses
An experiment is introduced to a sophomore chemistry course that demonstrates the effeciency and enantiospecificity of microbial/enzyme-mediated reactions and the use of NMR methods in determining the optical activity and absolute configuration of chiral alcohols.
Lee, Moses J. Chem. Educ. 1993, 70, A155.
Enantiomers |
Alcohols |
Bioorganic Chemistry |
Chirality / Optical Activity |
NMR Spectroscopy |
Microscale Lab
Optical activity can be created from "nothing"  Caswell, Lesley; Garcia-Garibay, Miguel A.; Scheffer, John R.; Trotter, James
Optically active products can be generated from achiral reactants.
Caswell, Lesley; Garcia-Garibay, Miguel A.; Scheffer, John R.; Trotter, James J. Chem. Educ. 1993, 70, 785.
Enantiomers |
Stereochemistry
Kaleidoscoptical Activity   Becker, Robert
A procedure of constructing a demonstration of polarized light to illustrate concepts of optical activity.
Becker, Robert J. Chem. Educ. 1993, 70, 74.
Enantiomers
Representing isomeric structures: Five applications.  Thall, Edwin.
Five applications of a new method that the author calls Representing Isomeric Structures, in which arrows are used to point to unique sites on the carbon skeleton to represent functional groups.
Thall, Edwin. J. Chem. Educ. 1992, 69, 447.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
The new method of rapid determination of chiral molecule configuration: The triangle method  Yongsheng, Han; Cailan, Wang
This paper describes a new method for applying the Cahn-Ingold-Prelog rules to determine the configuration of a chiral molecule directly from its Fischer projection formula.
Yongsheng, Han; Cailan, Wang J. Chem. Educ. 1992, 69, 273.
Chirality / Optical Activity |
Enantiomers |
Stereochemistry |
Molecular Properties / Structure
Microscale resolution of racemic 1-phenylethylamine and chiral high performance liquid chromatography (HPLC) in undergraduate chemistry   Krumpolc, Miroslav
A standard experiment has been modified to incorporate microscale techniques and employ chiral high performance liquid chromatography to determine enantiomeric purity.
Krumpolc, Miroslav J. Chem. Educ. 1991, 68, A176.
Enantiomers |
Amides |
Diastereomers |
Physical Properties |
Microscale Lab
Chiral crackers: A palatable approach to optical isomerism  Griffin, Susan F.
Crackers obtained from the grocery store can be used to help students understand enantiomers.
Griffin, Susan F. J. Chem. Educ. 1991, 68, 1029.
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
Natural and unnatural models for illustrating chirality at two centers  Nave, Paul M.
Some clever suggestions for models that will help students understand chirality better. Puppies and a two-headed goat are involved.
Nave, Paul M. J. Chem. Educ. 1991, 68, 1028.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
A projection for bond location in chair cyclohexane and related structures  Woolf, A. A.
Benefits and drawbacks of 2D representations for chair cyclohexane and related structures.
Woolf, A. A. J. Chem. Educ. 1991, 68, 646.
Alkanes / Cycloalkanes |
Diastereomers |
Enantiomers |
Constitutional Isomers
The stereochemistry of additions to trans-anethole  McGahey, Lawrence
Trans-anethole is brominated with pyridinium bromide perbromide in dichloromethane.
McGahey, Lawrence J. Chem. Educ. 1990, 67, 554.
Addition Reactions |
Stereochemistry |
Mechanisms of Reactions |
Alkenes |
Diastereomers |
Enantiomers
A derivation of the Masamune rule of multiplicativity in double asymmetric induction  Nakayama, Kensaku
The ability to prepare one diastereomeric or enantiomeric isomer in excess in a given chemical transformation where a stereoisomeric distribution of products is possible is currently one of the most highly sought goals in the field of synthetic organic chemistry.
Nakayama, Kensaku J. Chem. Educ. 1990, 67, 20.
Synthesis |
Diastereomers |
Enantiomers
A demonstration of the optical activity of a pair of enantiomers  Knauer, Bruce
Uses the enantiomers (S)-(+)-carvone and (R)-(-)-carvone and a polarizing sheet to illustrate optical activity.
Knauer, Bruce J. Chem. Educ. 1989, 66, 1033.
Chirality / Optical Activity |
Enantiomers
Lecture demonstrations for organic/ biochemistry allied health courses  Deavor, James P.
Simple demonstrations on enantiomeric pairs and protein structure.
Deavor, James P. J. Chem. Educ. 1988, 65, 622.
Enantiomers |
Chirality / Optical Activity |
Proteins / Peptides |
Nonmajor Courses |
Amino Acids
Organic lecture demonstrations  Silversmith, Ernest F.
Organic chemistry may not be known for its spectacular, attention getting chemical reactions. Nevertheless, this author describes a few organic chemistry reactions that put points across and generate interest. This article provides a convenient sources of demonstrations and urges others to add to the collection. Demonstrations concerning: carbohydrates, spectroscopy, proteins, amines, carbohydrates, carboxylic acids, and much more.
Silversmith, Ernest F. J. Chem. Educ. 1988, 65, 70.
Molecular Properties / Structure |
Nucleophilic Substitution |
Acids / Bases |
Physical Properties |
Alkenes |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Aldehydes / Ketones |
Alcohols
Drawing enantiomers the easy way  Dunn, Howard E.
Drawing mirror images simultaneously using both hands.
Dunn, Howard E. J. Chem. Educ. 1987, 64, 1042.
Stereochemistry |
Enantiomers
Molecular structure and chirality  Brand, David J.; Fisher, Jed
Clarification of the meaning of the term chiral and its application to both chiral and achiral molecules.
Brand, David J.; Fisher, Jed J. Chem. Educ. 1987, 64, 1035.
Molecular Properties / Structure |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
Simple rule for the conversion of Fischer monosaccharide projection formulas into Haworth representations  Argiles, J. M.
Many students struggle with memorizing Haworth structures, the authors provide some insight on this topic to help students.
Argiles, J. M. J. Chem. Educ. 1986, 63, 927.
Molecular Properties / Structure |
Enantiomers |
Chirality / Optical Activity |
Carbohydrates |
Molecular Modeling
The enzymatic resolution of aromatic amino acids  Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D.
This article presents an experiment that can demonstrate as many principles of steroisomersim as possible and is also efficient in terms of time and preparation.
Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D. J. Chem. Educ. 1986, 63, 646.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers |
Aromatic Compounds |
Amino Acids |
Enzymes
A simple hand method for Cahn-Ingold-Prelog assignment of R and S configuration to chiral carbons  Aalund, Martin P.; Pincock, James A.
A description of a simple hand method for Cahn-Ingold-Prelog assignment of R and S configuration to chiral carbons.
Aalund, Martin P.; Pincock, James A. J. Chem. Educ. 1986, 63, 600.
Enantiomers |
Stereochemistry
A novel method for assigning R, S labels to enantiomers  Huheey, James E.
A procedure is suggested to provide students with greater insight into the properties of dissymmetrical molecules.
Huheey, James E. J. Chem. Educ. 1986, 63, 598.
Enantiomers |
Stereochemistry
Stress the twofold axis of the threo isomer  Tavernier, D.
The author weighs in on the the controversy of the threo and erythro nomenclature.
Tavernier, D. J. Chem. Educ. 1986, 63, 511.
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Diastereomers
Determination of stereochemical relationships  Ayorinde, Folahan O.
A sequence of steps to enable students to arrive with relative ease at correct stereochemical relationships.
Ayorinde, Folahan O. J. Chem. Educ. 1985, 62, 297.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Diastereomers
Models for illustrating chirality at two centers  Feldman, Martin R.
This note suggests common objects that can be used as models to illustrate chirality at two centers, and to introduce the concepts of diastereomers and the meso configuration.
Feldman, Martin R. J. Chem. Educ. 1984, 61, 1050.
Molecular Properties / Structure |
Molecular Modeling |
Chirality / Optical Activity |
Diastereomers |
Stereochemistry |
Enantiomers
The possible chirality of tetrahedral carbon atoms with two substituents of identical constitution  Schafer, Lothar; Van Alsenoy, C.; Van Den Enden, L.
Because of differences in bond angles, species of the form Cabc2 may in fact be chiral.
Schafer, Lothar; Van Alsenoy, C.; Van Den Enden, L. J. Chem. Educ. 1984, 61, 945.
Chirality / Optical Activity |
Molecular Properties / Structure |
Stereochemistry |
Enantiomers
R/S: Apple stereochemistry program  Barone, Rene; Meyer, Roger; Arbelot, Michel
51. Bits and pieces, 20. Computer program for helping students to learn R/S conventions.
Barone, Rene; Meyer, Roger; Arbelot, Michel J. Chem. Educ. 1984, 61, 524.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Enrichment / Review Materials
The determination of the stereochemistry of erythro-1,2-diphenyl-1,2-ethanediol: an undergraduate organic experiment  Rowland, Alex T.
The author describes a successful experiment that has been conducted by first-year organic chemistry students which illustrates the power of H NMR spectroscopy in a configuration determination.
Rowland, Alex T. J. Chem. Educ. 1983, 60, 1084.
Phenols |
Alcohols |
NMR Spectroscopy |
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Cyclohexane stereochemistry   Dauphinee, G. A.; Forrest, T. P .
44. Bits and pieces, 16. The authors report on a graphic program for cyclohexane stereochemistry which has proven to be highly successful in developing both visualization aptitude and drawing skills.
Dauphinee, G. A.; Forrest, T. P . J. Chem. Educ. 1983, 60, 732.
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Molecular Modeling
The flat and direct way to R and S configurations: two-dimensional designation of absolute configuration  Brun, Y.; Leblanc, P.
Teaching stereochemistry poses a challenge to teachers when representations are two-dimensional. These authors suggest a method where students convert wedge representations into Fischer projections. This offers some pedagogical advantages.
Brun, Y.; Leblanc, P. J. Chem. Educ. 1983, 60, 403.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Determination of chiral molecule configuration in Fischer projections  Epling, Gary A.
A non-mathematical procedure that students can use to master and remember the determination of R or S configuration.
Epling, Gary A. J. Chem. Educ. 1982, 59, 650.
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers
Reactions between chiral molecules: A handy analogy  Richardson, W. S.
Simulating a reaction between R and S structures through the shaking of hands.
Richardson, W. S. J. Chem. Educ. 1982, 59, 649.
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers |
Reactions
Stereochemistry and macromolecules: Principles and applications  Quirk, Roderic P.
This article was written to provide an introduction to the basic concepts of polymer stereochemistry and their applications.
Quirk, Roderic P. J. Chem. Educ. 1981, 58, 540.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
A helpful stereochemical instructional tool  England, Don
The figure found in this note has been helpful in aiding student understanding of stereochemistry.
England, Don J. Chem. Educ. 1981, 58, 31.
Stereochemistry |
Molecular Modeling |
Molecular Properties / Structure |
Chirality / Optical Activity |
Diastereomers |
Enantiomers
Rubber gloves, rubber balls, and optical activity  Perkins, Robert
Several demonstrations aimed at helping students to understand optical activity.
Perkins, Robert J. Chem. Educ. 1980, 57, 809.
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers
Conversion of (+)-Limonene to (-)-Carvone: An organic laboratory sequence of local interest  Rothenberger, Otis S.; Krasnoff, Stuart B.; Rollins, Ronald B.
Orange oil is converted to one of the components of spearmint oil; the detectable odor difference is due to stereochemical factors.
Rothenberger, Otis S.; Krasnoff, Stuart B.; Rollins, Ronald B. J. Chem. Educ. 1980, 57, 741.
Stereochemistry |
Molecular Properties / Structure |
Synthesis |
Separation Science |
Industrial Chemistry |
Applications of Chemistry |
Enantiomers
Facile assignment of R,S designations to Fischer projections  Price, Howard C.
Suggests a method of assigning R,S designations to Fischer projections that easier than that described in the cited article.
Price, Howard C. J. Chem. Educ. 1980, 57, 528.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Rotation of plane-polarized light: A simple model  Hill, Roger R.; Whatley, Barrie G.
A simple model that explains why enantiomers of a chiral compound rotate light in different directions.
Hill, Roger R.; Whatley, Barrie G. J. Chem. Educ. 1980, 57, 306.
Photochemistry |
Molecular Modeling |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers |
Molecular Properties / Structure
Stereochemical nonequivalence of ligands and faces (heterotopicity)  Eliel, Ernest L.
Reviews the concepts associated with stereochemical non-equivalence (heterotopicity).
Eliel, Ernest L. J. Chem. Educ. 1980, 57, 52.
Stereochemistry |
Enantiomers |
Diastereomers |
Constitutional Isomers |
Group Theory / Symmetry
Glutamic acid in pheromone synthesis: A useful chiral synthon  Smith, Leverett R.; Williams, Howard J.
Outlines synthetic routes for the formation of various pheromones from glutamic acid.
Smith, Leverett R.; Williams, Howard J. J. Chem. Educ. 1979, 56, 696.
Synthesis |
Chirality / Optical Activity |
Natural Products |
Stereochemistry |
Enantiomers |
Amino Acids
Optical illusions in drawings of cyclohexane derivatives  Feldman, Martin R.
An optical illusion in the representation of chair cyclohexanes.
Feldman, Martin R. J. Chem. Educ. 1979, 56, 659.
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Diastereomers |
Alkanes / Cycloalkanes
Prochirality and the English beer glass  Sanders, J. K. M.
The English beer glass represents an ideal model for illustrating the concepts of prochirality and assymetric induction.
Sanders, J. K. M. J. Chem. Educ. 1979, 56, 594.
Molecular Properties / Structure |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
Determination of chiral molecule configuration using the 1,2,5 Rule  Dietzel, Richard Adams
Determining R / S configurations using the 1,2,5 rule.
Dietzel, Richard Adams J. Chem. Educ. 1979, 56, 451.
Molecular Properties / Structure |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
Amine-catalyzed isomerization of diethylmaleate to diethylfumarate  Glover, Irving T.; Cushing, Gary W.; Windsor, Chris M.
The authors have used the reaction in this paper in their introductory organic chemistry course to illustrate principles of GLC , geometric isomerism, homogeneous catalysis, and activation energy determinations.
Glover, Irving T.; Cushing, Gary W.; Windsor, Chris M. J. Chem. Educ. 1978, 55, 812.
Diastereomers |
Enantiomers |
Catalysis |
Gas Chromatography
Schemes and transformations in the (CH)8 series. The "valence isomers" of cyclooctatetraene  Smith, Leverett R.
The authors provide a scheme for deriving valence isomers.
Smith, Leverett R. J. Chem. Educ. 1978, 55, 569.
Aromatic Compounds |
Enantiomers |
Stereochemistry |
Diastereomers
Use of hand models for assigning configurational nomenclature  Garrett, James M.
A subject which often produces consternation in a beginning student in organic chemistry is that of sequential nomenclature involving chiral centers. After having studied the Cahn-Ingold-Prelog rules of nomenclature a student may be asked to examine a structure as shown in this article.
Garrett, James M. J. Chem. Educ. 1978, 55, 493.
Nomenclature / Units / Symbols |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
Z- and E-stereoisomerism: An experiment using photochemistry  Bourelle-Wargnier, F.; Feigenbaum, A.; Muzart, J.
The authors' report on the preparation of 2-benzylidenecyclohexanone E(I).
Bourelle-Wargnier, F.; Feigenbaum, A.; Muzart, J. J. Chem. Educ. 1978, 55, 339.
Stereochemistry |
Photochemistry |
Aromatic Compounds |
Thin Layer Chromatography |
IR Spectroscopy |
Enantiomers
Chirality, diastereoisomerism, and the Narwhal  Stirling, C. J.
There are many simple examples of enantiomeric objects, both natural and man-made and their static interrelationship is directly and tellingly examined with the aid of a mirror.
Stirling, C. J. J. Chem. Educ. 1978, 55, 32.
Enantiomers |
Chirality / Optical Activity
From the concept of relative configuration to the definition of erythro and threo  Gielen, Marcel
Defines the relative configuration of two chiral centers and uses this concept to define erythro and threo.
Gielen, Marcel J. Chem. Educ. 1977, 54, 673.
Molecular Properties / Structure |
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Selectivity and specificity in organic reactions  Ault, Addison
Distinguishes between various forms of selectivity and specificity (e.g. the us of and differences between stereoselective and stereospecific).
Ault, Addison J. Chem. Educ. 1977, 54, 614.
Reactions |
Stereochemistry |
Diastereomers |
Enantiomers |
Nomenclature / Units / Symbols
Addendum to "Simple demonstration of optical activity"  Dean, Walter K.
Modifications to an earlier demonstration on optical activity.
Dean, Walter K. J. Chem. Educ. 1977, 54, 494.
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers
A Device for easy demonstration of optical activity and optical rotatory dispersion  Kinney, John B.; Skinner, James F.
Describes a portable device that can be used for the simultaneous demonstration of both optical activity and optical rotatory dispersion for individual students and for a class with an overhead projector.
Kinney, John B.; Skinner, James F. J. Chem. Educ. 1977, 54, 494.
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers |
Laboratory Equipment / Apparatus
A polarimeter experiment for introductory courses  Gibas, Murray A.
This note describes an experiment which can be done with an inexpensive polarimeter, requires only about 20 minutes per student, and yet gives results accurate enough to satisfy the students.
Gibas, Murray A. J. Chem. Educ. 1976, 53, 462.
Enantiomers |
Carbohydrates |
Equilibrium
The resolution of racemic acid: A classic stereochemical experiment for the undergraduate laboratory  Kauffman, George B.; Myers, Robin D.
Includes historical background of Pasteur's work and a procedure for investigating the relations between the tartaric acids, racemic acid, and their sodium ammonium salts.
Kauffman, George B.; Myers, Robin D. J. Chem. Educ. 1975, 52, 777.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Rediscovery in a course for nonscientists. Use of molecular models to solve classical structural problems  Wood, Gordon W.
Describes exercises using simple ball and stick models that students with no chemistry background can solve in the context of the original discovery.
Wood, Gordon W. J. Chem. Educ. 1975, 52, 177.
Molecular Modeling |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Nonmajor Courses
A simple algorithmic method for the recognition of theoretically chiral octahedral complexes  Richardson, Robert T.
A simple algorithmic procedure is available which allows the student to unambiguously determine whether a particular octahedral configuration is chiral or achiral without recourse to drawing mirror-images or knowingly applying symmetry theory.
Richardson, Robert T. J. Chem. Educ. 1974, 51, 347.
Enantiomers |
Coordination Compounds |
Stereochemistry |
Group Theory / Symmetry
A simple dynamic stereomodel for the interconversion of enantiomers via a high-energy achiral intermediate  Stirling, C. J. M.
A simple dynamic stereomodel for the interconversion of enantiomers via a high-energy achiral intermediate because introduction of molecular chirality to the elementary students is often effectively made by the comparison of familiar chiral and achiral objects.
Stirling, C. J. M. J. Chem. Educ. 1974, 51, 50.
Chirality / Optical Activity |
Enantiomers |
Stereochemistry |
Molecular Modeling
A simple demonstration of enantiomerism  Richards, K. E.
Design for a wooden box containing a mirror that uses a molecular model to demonstrate enantiomerism.
Richards, K. E. J. Chem. Educ. 1973, 50, 632.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Sterospecificity in the palm of your hand  Treptow, Richard S.
A simple demonstration to illustrate the reaction between two optically active agents.
Treptow, Richard S. J. Chem. Educ. 1973, 50, 131.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers |
Molecular Properties / Structure
The odor of optical isomers. An experiment in organic chemistry  Murov, Steven L.; Pickering, Miles
The experiment described involves the separation and characterization of l-carvone from spearmint oil and d-carvone from caraway seed oil.
Murov, Steven L.; Pickering, Miles J. Chem. Educ. 1973, 50, 74.
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Stereochemistry |
Separation Science
Complementary rules to define R or S configuration. Viewing molecules from any side  Cori, O.
Reviews the rules to specify the configuration of a chiral center.
Cori, O. J. Chem. Educ. 1972, 49, 461.
Chirality / Optical Activity |
Enantiomers |
Stereochemistry |
Molecular Properties / Structure
A model for demonstrating helical dissymmetry  Magliulo, Anthony R.
Ordinary pipe cleaners can be used to illustrate the concept of helical dissymmetry.
Magliulo, Anthony R. J. Chem. Educ. 1972, 49, 391.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Chirality in Sea Shells  Plumb, Robert C.; Martin, Dean F.
Gastropods exhibit a preference for either right- or left-handed spirals.
Plumb, Robert C.; Martin, Dean F. J. Chem. Educ. 1972, 49, 330.
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
A model for demonstrating the rotation of polarized light by an asymmetric molecule  Berry, James P.
A nut and bolt (representing an asymmetric molecule and a beam of plane-polarized light) are used to illustrate that regardless of which face of the nut is up, one must rotate the bolt counterclockwise to cause it to pass downward through the nut.
Berry, James P. J. Chem. Educ. 1970, 47, 659.
Molecular Properties / Structure |
Molecular Mechanics / Dynamics |
Chirality / Optical Activity |
Enantiomers
LTE. Rule of thumb for predicting optical activity  Mowery, Dwight F., Jr.
The author clarifies a point made in his earlier article.
Mowery, Dwight F., Jr. J. Chem. Educ. 1969, 46, 700.
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers |
Stereochemistry
The resolution of DL-histidine: An organic chemistry experiment using an ion exchange resin  Bosch, Arthur J.
This experiment involves the isolation of the amino acid, D-histidine, from DL-histidine, and gives a product with high optical purity while demonstrating the use of an ion exchange resin and mixed solvent recrystallization.
Bosch, Arthur J. J. Chem. Educ. 1969, 46, 691.
Ion Exchange |
Amino Acids |
Chirality / Optical Activity |
Enantiomers
Resolution and stereochemistry of asymmetric silicon, germanium, tin, and lead compounds  Belloli, Robert
It is the purpose of this review to summarize the results of stereochemical studies on compounds containing an asymmetric group IVA atom.
Belloli, Robert J. Chem. Educ. 1969, 46, 640.
Stereochemistry |
Organometallics |
Enantiomers |
Mechanisms of Reactions |
Nucleophilic Substitution
Wooden models of asymmetric structures  Nye, Martin J.
Wooden blocks are cut to represent molecules of a pair of enantiomers, and are constructed so that they may be readily stacked together to show crystal structure.
Nye, Martin J. J. Chem. Educ. 1969, 46, 175.
Molecular Modeling |
Molecular Properties / Structure |
Enantiomers |
Crystals / Crystallography
A simplified proof of the constitution and configuration of D-glucose  Frohwein, Y, Z.
Presents a simplified proof of the constitution and configuration of D-glucose for students being introduced to carbohydrate chemistry.
Frohwein, Y, Z. J. Chem. Educ. 1969, 46, 55.
Carbohydrates |
Molecular Properties / Structure |
Enantiomers |
Chirality / Optical Activity
Resolution of D,L-alpha-phenylethylamine: An introductory organic chemistry experiment  Ault, Addison
This experiment clarifies several of the concepts of optical isomerism and introduces the techniques of recrystallization, extraction, and distillation.
Ault, Addison J. Chem. Educ. 1965, 42, 269.
Amines / Ammonium Compounds |
Enantiomers |
Chirality / Optical Activity
Optical rotation  Evans, J. O. M.; Tietze, H. R.
The angle of rotation of sucrose can be easily determined using this simple demonstration.
Evans, J. O. M.; Tietze, H. R. J. Chem. Educ. 1964, 41, A973.
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Systematic names for the tartaric acids  Baxter, J. N.
Examines the use of the small capital letters D and L in naming tartaric acids.
Baxter, J. N. J. Chem. Educ. 1964, 41, 619.
Nomenclature / Units / Symbols |
Acids / Bases |
Carbohydrates |
Chirality / Optical Activity |
Enantiomers
The rotation of optically pure 2-bromooctane  Traynham, James C.
This paper reviews the various values reported for the optical rotation of pure 2-bromooctane and makes a case for its most probable value.
Traynham, James C. J. Chem. Educ. 1964, 41, 617.
Chirality / Optical Activity |
Enantiomers |
Molecular Properties / Structure
An introduction to the sequence rule: A system for the specification of absolute configuration  Cahn, R. S.
This paper describes the relatively simple methods that suffice for specifying the absolute configuration of the majority of optically active organic compounds - those containing asymmetric carbon atoms.
Cahn, R. S. J. Chem. Educ. 1964, 41, 116.
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Nomenclature / Units / Symbols
Three-dimensional effects in biochemistry  Ingraham, Lloyd L.
Explores stereospecificity and stereoselectivity; rigidity requirements; steric effects; and stereospecificity when not required mechanistically.
Ingraham, Lloyd L. J. Chem. Educ. 1964, 41, 66.
Molecular Properties / Structure |
Catalysis |
Enzymes |
Molecular Recognition |
Mechanisms of Reactions |
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Letters  Koons, Lawrence F.
Calls attention to a demonstration similar to that described in an earlier article.
Koons, Lawrence F. J. Chem. Educ. 1962, 39, 318.
Chirality / Optical Activity |
Enantiomers |
Molecular Properties / Structure
Resolution by the method of racemic modification: A demonstration of analogy  Williams, Francis T.
Using shaking hands to demonstrate resolution by the method of racemic modification.
Williams, Francis T. J. Chem. Educ. 1962, 39, 211.
Molecular Properties / Structure |
Diastereomers |
Enantiomers
The criterion for optical isomerism  Thompson, H. Bradford
The absence of planes or centers of symmetry is not a criterion for optical isomerism.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 530.
Chirality / Optical Activity |
Enantiomers |
Molecular Properties / Structure
Letters to the editor  Mayper, Stuart A.
The author analyzes more closely a dismissed method for representing hexacovalent complexes with specific configurations.
Mayper, Stuart A. J. Chem. Educ. 1957, 34, 623.
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Letters to the editor  Pickering, Roger A.
Commentary on the D and L convention as applied to tartaric acid.
Pickering, Roger A. J. Chem. Educ. 1957, 34, 362.
Stereochemistry |
Nomenclature / Units / Symbols |
Acids / Bases |
Molecular Properties / Structure |
Enantiomers |
Chirality / Optical Activity
Assignment of D and L prefixes to the tartaric acids  Vickery, Hubert Bradford
Discusses conventions regarding the assignment of D and L prefixes to the tartaric acids.
Vickery, Hubert Bradford J. Chem. Educ. 1957, 34, 339.
Molecular Properties / Structure |
Enantiomers |
Stereochemistry |
Chirality / Optical Activity |
Nomenclature / Units / Symbols
A chart of the stereochemical relationships of the aldoses  Nelson, Peter F.
Provides a chart of the stereochemical relationships of the aldoses that allows students to review and visualize the Rosanoff classification by comparing the D and L enantiomeric forms.
Nelson, Peter F. J. Chem. Educ. 1957, 34, 179.
Stereochemistry |
Molecular Properties / Structure |
Carbohydrates |
Enantiomers |
Chirality / Optical Activity
Assignment of D and L prefixes to the tartaric acids: The Wohl conventions  Abernethy, John Leo
Examines the Wohl system for designating dextro- and levorotatory tartaric acids.
Abernethy, John Leo J. Chem. Educ. 1957, 34, 150.
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Enantiomers |
Stereochemistry |
Chirality / Optical Activity |
Acids / Bases
Assignment of D and L prefixes to the tartaric acids: An unsettled stereochemical question  Nenitzescu, Costin D.
Examines the Wohl and Freudenberg systems of designating dextro- and levorotatory tartaric acids.
Nenitzescu, Costin D. J. Chem. Educ. 1957, 34, 147.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Acids / Bases |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Letters to the editor  Gorin, George
Amplifies the discussion of proper configurational prefixes for the tartaric acids.
Gorin, George J. Chem. Educ. 1956, 33, 478.
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
Some difficulties and common errors related to the designation of sugar configurations  Abernethy, John Leo
Examines some difficulties and common errors related to the designation of sugar configurations.
Abernethy, John Leo J. Chem. Educ. 1956, 33, 88.
Carbohydrates |
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Aspects of isomerism and mesomerism. III. Stereoisomerism  Bent, Richard L.
Examines the tetrahedral nature of carbon, multiple bonds, enantiomorphism, diastereoisomerism, and geometric isomerism.
Bent, Richard L. J. Chem. Educ. 1953, 30, 328.
Molecular Properties / Structure |
Enantiomers |
Diastereomers |
Constitutional Isomers
Aspects of isomerism and mesomerism. II. Structural isomerism  Bent, Richard L.
Examines the relationship between structural, optical, and geometric isomerism.
Bent, Richard L. J. Chem. Educ. 1953, 30, 284.
Molecular Properties / Structure |
Constitutional Isomers |
Enantiomers |
Diastereomers