TIGER

Journal Articles: 28 results
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
A Different Approach to a 3-D Periodic System Including Stable Isotopes  Alexandru T. Balaban
On a Periodic System with the two dimensions represented by Periods and Columns, one may stack each stable nuclide of an element along the third dimension. This "Downtown Area" representation is helpful for interconnecting concepts of: element, isotope or nuclide (stable vs. radioactive), atomic weight, atomic number, mass number.
Balaban, Alexandru T. J. Chem. Educ. 1999, 76, 359.
Periodicity / Periodic Table |
Isotopes |
Nuclear / Radiochemistry
Nucleogenesis! A Game with Natural Rules for Teaching Nuclear Synthesis and Decay  Donald J. Olbris and Judith Herzfeld
Nucleogenesis! is a simple and engaging game designed to introduce undergraduate physics or chemistry students to nuclear synthesis and decay by simulation of these processes. By playing the game, students become more familiar with nuclear reactions and the "geography" of the table of isotopes.
Olbris, Donald J.; Herzfeld, Judith. J. Chem. Educ. 1999, 76, 349.
Isotopes |
Nuclear / Radiochemistry |
Nonmajor Courses
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics  Kent J. Crippen and Robert D. Curtright
A four-part activity utilizing a graphing calculator to investigate nuclear stability is described. Knowledge acquired through the activity provides background for answering the societal question of using nuclear materials for energy production.
Crippen, Kent J.; Curtright, Robert D. J. Chem. Educ. 1998, 75, 1434.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Chemometrics
Fundamentals of Chemistry, Second Edition and Essentials of Chemistry, Second Edition  reviewed by Robert D. Allendoerfer
The two texts reviewed are identical except that the "Essentials" text has a soft cover while the "Fundamentals" text has a hard cover and three additional chapters at the end, covering nuclear, organic, and biochemistry.
Allendoerfer, Robert D. J. Chem. Educ. 1996, 73, A245.
Nuclear / Radiochemistry
Simple Rules for Determining Nuclear Stability and Type of Radioactive Decay  Mark L. Campbell
Simple rules for determining nuclear stability and type of radioactive decay.
Campbell, Mark L. J. Chem. Educ. 1995, 72, 892.
Nuclear / Radiochemistry
Teaching Aids For Nuclear Chemistry  Atwood, Charles H.
Listing of topics and sources related to nuclear chemistry, including bibliographies for the Journal and Scientific American.
Atwood, Charles H. J. Chem. Educ. 1994, 71, 845.
Nuclear / Radiochemistry
Nuclear Shapes: From the Mundane to the Exotic  Yates, Steven W.
The shape and stability of atomic nuclei.
Yates, Steven W. J. Chem. Educ. 1994, 71, 837.
Nuclear / Radiochemistry |
Atomic Properties / Structure
On neutron numbers and atomic masses  Heyrovsk, R.
Assigning neutron numbers, correct neutron numbers, and atomic masses and nucleon numbers.
Heyrovsk, R. J. Chem. Educ. 1992, 69, 742.
Nuclear / Radiochemistry
Advice from Allied Health faculty to chemistry faculty  Dever, David F.
Finding out what the different health professions would like to see from undergraduate chemistry programs.
Dever, David F. J. Chem. Educ. 1991, 68, 763.
Medicinal Chemistry |
Nuclear / Radiochemistry |
Nutrition |
Vitamins |
Gases
Radioactivity: A natural phenomenon  Ronneau, C.
Main points of information and a demonstration regarding radioactivity.
Ronneau, C. J. Chem. Educ. 1990, 67, 736.
Nuclear / Radiochemistry |
Toxicology
Predicting nuclear stability using the periodic table  Blanck, Harvey F.
Develops several empirical rules to use with the periodic table as an aid to recalling those nuclides that are stable.
Blanck, Harvey F. J. Chem. Educ. 1989, 66, 757.
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Isotopes
Nuclear chemistry: Include it in your curriculum  Atwood, Charles H.; Sheline, R. K.
This article takes a look at some of the topics that might be included in a nuclear chemistry section of your chemistry course.
Atwood, Charles H.; Sheline, R. K. J. Chem. Educ. 1989, 66, 389.
Nuclear / Radiochemistry
Beta decay diagram   Suder, Robert
Too often instructors believe that students can intuitively understand nuclear decay from balanced equations, but it has been the author's experience that a diagram greatly enhances student knowledge of this process.
Suder, Robert J. Chem. Educ. 1989, 66, 231.
Nuclear / Radiochemistry
Nuclear synthesis and identification of new elements  Seaborg, Glenn T.
Review of descriptive terms, nuclear reactions, radioactive decay modes, and experimental methods in nuclear chemistry.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 392.
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Nuclear Energy  Mickey, Charles D.
A brief summary of the history and key concepts of nuclear energy.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 360.
Nuclear / Radiochemistry
Elemental evolution and isotopic composition  Rydberg, J.; Choppin, G. R.
Reviews elemental abundances and the processes of elemental creation.
Rydberg, J.; Choppin, G. R. J. Chem. Educ. 1977, 54, 742.
Astrochemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Isotopes |
Nuclear / Radiochemistry |
Geochemistry
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Questions [and] Answers  Campbell, J. A.
284-289. Six questions and their answers on practical applications of chemistry.
Campbell, J. A. J. Chem. Educ. 1977, 54, 161.
Medicinal Chemistry |
Enzymes |
Nuclear / Radiochemistry |
Drugs / Pharmaceuticals |
Applications of Chemistry |
Enrichment / Review Materials
Fusion power  Landis, John W.
Discusses nuclear fission and fusion as energy sources.
Landis, John W. J. Chem. Educ. 1973, 50, 658.
Nuclear / Radiochemistry
Stellar nucleosynthesis. A vehicle for the teaching of nuclear chemistry  Viola, V. E., Jr.
Summarizes the basic properties of matter, stellar evolution and nucleosynthesis, radioactive decay, synthetic and "super-heavy" elements, and radiation in the environment.
Viola, V. E., Jr. J. Chem. Educ. 1973, 50, 311.
Nuclear / Radiochemistry |
Astrochemistry
Nuclear concepts as part of the undergraduate chemistry curriculum  Caretto, A. A., Jr.; Sugihara, T. T.
It is proposed that there are distinct advantages to a freshman curriculum that introduces nuclear concepts simultaneously with the discussion of analogous atomic and molecular concepts.
Caretto, A. A., Jr.; Sugihara, T. T. J. Chem. Educ. 1970, 47, 569.
Nuclear / Radiochemistry |
Atomic Properties / Structure
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P.
(1) Is there more to nuclear stability than only the neutron to proton ration? - answer by Choppin. (2) What are the products generated by the electrolysis of molten potassium nitrate with stainless steel electrodes? - answer by Young.
Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P. J. Chem. Educ. 1970, 47, 73.
Nuclear / Radiochemistry |
Isotopes |
Atomic Properties / Structure |
Electrochemistry
Nuclear and radiochemistry in the curriculum in general chemistry  Garrett, A. B.
The author summarizes how he integrates nuclear and radiochemistry into the general chemistry curriculum.
Garrett, A. B. J. Chem. Educ. 1960, 37, 384.
Nuclear / Radiochemistry |
Isotopes
Dating with carbon 14  Kulp, J. Laurence
Examines the principles, technique, results of and problems with radioactive dating using carbon-14.
Kulp, J. Laurence J. Chem. Educ. 1953, 30, 432.
Nuclear / Radiochemistry |
Isotopes