TIGER

Journal Articles: 42 results
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
Bringing History to the Classroom: Spoofs about Problems in Obtaining Research Grants  Sidney Toby
This article is a spoof on the History of Science and consists of four skits depicting the difficulties famous men and women in science might have had in fictional interviews while seeking funding for their research.
Toby, Sidney. J. Chem. Educ. 2004, 81, 503.
Gases |
Physical Properties |
Nuclear / Radiochemistry |
Women in Chemistry |
Administrative Issues
A Serious but Not Ponderous Book about Nuclear Energy (by Walter Scheider)  Peggy Geiger
Nuclear chemistry for the non-scientist.
Geiger, Peggy. J. Chem. Educ. 2002, 79, 314.
Nuclear / Radiochemistry |
Nonmajor Courses
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
Nucleogenesis! A Game with Natural Rules for Teaching Nuclear Synthesis and Decay  Donald J. Olbris and Judith Herzfeld
Nucleogenesis! is a simple and engaging game designed to introduce undergraduate physics or chemistry students to nuclear synthesis and decay by simulation of these processes. By playing the game, students become more familiar with nuclear reactions and the "geography" of the table of isotopes.
Olbris, Donald J.; Herzfeld, Judith. J. Chem. Educ. 1999, 76, 349.
Isotopes |
Nuclear / Radiochemistry |
Nonmajor Courses
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics  Kent J. Crippen and Robert D. Curtright
A four-part activity utilizing a graphing calculator to investigate nuclear stability is described. Knowledge acquired through the activity provides background for answering the societal question of using nuclear materials for energy production.
Crippen, Kent J.; Curtright, Robert D. J. Chem. Educ. 1998, 75, 1434.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Chemometrics
Radioactivity in Everyday Life  S. G. Hutchison, F. I. Hutchison
This paper discusses the terminology appropriate to radiation exposure and dose, the three sources of natural background radiation (cosmic radiation, cosmogenic radiation, and terrestrial radiation), and several radioactive isotopes that are significant contributors to the radiation exposure received by individuals.
Hutchison, S. G.; Hutchison, F. I. J. Chem. Educ. 1997, 74, 501.
Learning Theories |
Nuclear / Radiochemistry |
Isotopes |
Consumer Chemistry
Fundamentals of Chemistry, Second Edition and Essentials of Chemistry, Second Edition  reviewed by Robert D. Allendoerfer
The two texts reviewed are identical except that the "Essentials" text has a soft cover while the "Fundamentals" text has a hard cover and three additional chapters at the end, covering nuclear, organic, and biochemistry.
Allendoerfer, Robert D. J. Chem. Educ. 1996, 73, A245.
Nuclear / Radiochemistry
Successes and Techniques Associated with Teaching the Chemistry of Radioactive Wastes  Donald H. Williams
Description of a chemistry course, "The Chemistry of Radwastes", that serves as a chemistry course for nonscience majors.
Williams, Donald H. J. Chem. Educ. 1995, 72, 971.
Nuclear / Radiochemistry |
Nonmajor Courses
Teaching Aids For Nuclear Chemistry  Atwood, Charles H.
Listing of topics and sources related to nuclear chemistry, including bibliographies for the Journal and Scientific American.
Atwood, Charles H. J. Chem. Educ. 1994, 71, 845.
Nuclear / Radiochemistry
Nuclear Shapes: From the Mundane to the Exotic  Yates, Steven W.
The shape and stability of atomic nuclei.
Yates, Steven W. J. Chem. Educ. 1994, 71, 837.
Nuclear / Radiochemistry |
Atomic Properties / Structure
On neutron numbers and atomic masses  Heyrovsk, R.
Assigning neutron numbers, correct neutron numbers, and atomic masses and nucleon numbers.
Heyrovsk, R. J. Chem. Educ. 1992, 69, 742.
Nuclear / Radiochemistry
Argon-potassium atomic weight inversion in the periodic table.  Arnikar, H. J.
An explanation for the Ar-K inversion in terms of the nuclear characteristics of the naturally occurring isotopes of these elements.
Arnikar, H. J. J. Chem. Educ. 1992, 69, 687.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Geochemistry |
Isotopes
An alternate use of dilithium crystals   Lang, Frank T.
A Star Trek example of a mass-to-energy conversion important in nuclear reactions.
Lang, Frank T. J. Chem. Educ. 1990, 67, 277.
Nuclear / Radiochemistry |
Calorimetry / Thermochemistry
Cold fusion as the subject of a final exam in Honors General Chemistry  Porile, Norbert T.
Seven final exam questions in honors general chemistry based on a hypothetical cold fusion process.
Porile, Norbert T. J. Chem. Educ. 1989, 66, 932.
Nuclear / Radiochemistry
Nuclear chemistry: Include it in your curriculum  Atwood, Charles H.; Sheline, R. K.
This article takes a look at some of the topics that might be included in a nuclear chemistry section of your chemistry course.
Atwood, Charles H.; Sheline, R. K. J. Chem. Educ. 1989, 66, 389.
Nuclear / Radiochemistry
Beta decay diagram   Suder, Robert
Too often instructors believe that students can intuitively understand nuclear decay from balanced equations, but it has been the author's experience that a diagram greatly enhances student knowledge of this process.
Suder, Robert J. Chem. Educ. 1989, 66, 231.
Nuclear / Radiochemistry
Radioactive dating: A method for geochronology  Rowe, M. W.
The discovery of radioactivity, radioactive dating, and various dating methods.
Rowe, M. W. J. Chem. Educ. 1985, 62, 580.
Geochemistry |
Nuclear / Radiochemistry |
Isotopes |
Mass Spectrometry
Nuclear synthesis and identification of new elements  Seaborg, Glenn T.
Review of descriptive terms, nuclear reactions, radioactive decay modes, and experimental methods in nuclear chemistry.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 392.
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Natural sources of ionizing radiation  Bodner, George M.; Rhea, Tony A.
Units of radiation measurement, calculations of radiation dose equivalent, sources of ionizing radiation and its biological effects.
Bodner, George M.; Rhea, Tony A. J. Chem. Educ. 1984, 61, 687.
Natural Products |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols
A method for the determination of half-lives of long lived radioisotopes  Muse, Lowell A.; Safter, Warren J.
It is possible to obtain a rather accurate estimate of the half-life of long-lived radioisotopes by absolute counting of a sample of known mass.
Muse, Lowell A.; Safter, Warren J. J. Chem. Educ. 1982, 59, 431.
Isotopes |
Nuclear / Radiochemistry |
Laboratory Management
Nuclear Energy  Mickey, Charles D.
A brief summary of the history and key concepts of nuclear energy.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 360.
Nuclear / Radiochemistry
A chemistry lesson at Three Mile Island  Mammano, Nicholas J.
Teaching principles of general chemistry through references made to the nuclear incident at Three Mile Island.
Mammano, Nicholas J. J. Chem. Educ. 1980, 57, 286.
Equilibrium |
Gases |
Stoichiometry |
Nonmajor Courses |
Nuclear / Radiochemistry |
Applications of Chemistry
Nuclear beta decay  Loveland, Walter
135. Most general chemistry textbooks contain serious conceptual errors in their treatment of fundamental nuclear processes.
Loveland, Walter J. Chem. Educ. 1979, 56, 250.
Nuclear / Radiochemistry
Elemental evolution and isotopic composition  Rydberg, J.; Choppin, G. R.
Reviews elemental abundances and the processes of elemental creation.
Rydberg, J.; Choppin, G. R. J. Chem. Educ. 1977, 54, 742.
Astrochemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Isotopes |
Nuclear / Radiochemistry |
Geochemistry
Some simple classroom experiments on the Monte Carlo method  Para, A. Foglio; Lazzarini, E.
In this present paper some applications of the Monte Carlo method suggested to freshmen in nuclear physics and chemistry courses are described. These applications are concerned with radioactive decay, statistical fluctuation of the decay, the slowing of fast neutrons, and the calculation of the ratio of partial cross sections of certain nuclear reactions.
Para, A. Foglio; Lazzarini, E. J. Chem. Educ. 1974, 51, 336.
Nuclear / Radiochemistry
Stellar nucleosynthesis. A vehicle for the teaching of nuclear chemistry  Viola, V. E., Jr.
Summarizes the basic properties of matter, stellar evolution and nucleosynthesis, radioactive decay, synthetic and "super-heavy" elements, and radiation in the environment.
Viola, V. E., Jr. J. Chem. Educ. 1973, 50, 311.
Nuclear / Radiochemistry |
Astrochemistry
Nuclear concepts as part of the undergraduate chemistry curriculum  Caretto, A. A., Jr.; Sugihara, T. T.
It is proposed that there are distinct advantages to a freshman curriculum that introduces nuclear concepts simultaneously with the discussion of analogous atomic and molecular concepts.
Caretto, A. A., Jr.; Sugihara, T. T. J. Chem. Educ. 1970, 47, 569.
Nuclear / Radiochemistry |
Atomic Properties / Structure
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P.
(1) Is there more to nuclear stability than only the neutron to proton ration? - answer by Choppin. (2) What are the products generated by the electrolysis of molten potassium nitrate with stainless steel electrodes? - answer by Young.
Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P. J. Chem. Educ. 1970, 47, 73.
Nuclear / Radiochemistry |
Isotopes |
Atomic Properties / Structure |
Electrochemistry
Stable isotopes of the atmosphere  Eck, C. F.
This article briefly presents the composition of air, the discovery of isotopes, their concentration in air, and reviews their current enrichment status.
Eck, C. F. J. Chem. Educ. 1969, 46, 706.
Atmospheric Chemistry |
Isotopes |
Nuclear / Radiochemistry
General chemistry demonstrations based on nuclear and radiochemical phenomena  Herber, Rolfe H.
This paper is intended to provide a brief survey of lecture demonstrations, suitable for a general chemistry course, that incorporate some of the ideas, concepts, techniques, and instrumentation of the field of nuclear and radiochemistry.
Herber, Rolfe H. J. Chem. Educ. 1969, 46, 665.
Nuclear / Radiochemistry |
Isotopes
The principle of exponential change: Applications in chemistry, biochemistry, and radioactivity  Green, Frank O.
Examines the nature of exponential change and its applications to chemistry, biochemistry, and radioactivity, including radioactive decay, enzyme kinetics, colorimetry, spectrophotometry, and first order reaction kinetics.
Green, Frank O. J. Chem. Educ. 1969, 46, 451.
Nuclear / Radiochemistry |
Kinetics |
Enzymes |
Spectroscopy
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) How can half-reactions be added to determine potentials? (2) What is the approximate size and weight of uranium-235 necessary for a chain reaction to occur? (3) What is the distinction between an inhibitor and a negative catalyst?
Young, J. A.; Malik, J. G. J. Chem. Educ. 1968, 45, 477.
Electrochemistry |
Nuclear / Radiochemistry |
Catalysis
Dating of uranium minerals by the specific radioactivity of lead  Fairhall, A. W.
This paper discusses a method for estimating the age of a uranium mineral without recourse to elaborate mass-spectrometric techniques and presents an experimental procedure for doing so.
Fairhall, A. W. J. Chem. Educ. 1963, 40, 626.
Nuclear / Radiochemistry |
Isotopes |
Geochemistry
Nuclear and radiochemistry in the curriculum in general chemistry  Garrett, A. B.
The author summarizes how he integrates nuclear and radiochemistry into the general chemistry curriculum.
Garrett, A. B. J. Chem. Educ. 1960, 37, 384.
Nuclear / Radiochemistry |
Isotopes
Use of radioisotopes in the college chemistry laboratory  Phillips, David; Maybury, Robert H.
Provides experiments and experiences working with constructed Geiger counters and radioisotopes.
Phillips, David; Maybury, Robert H. J. Chem. Educ. 1959, 36, 133.
Nuclear / Radiochemistry |
Isotopes |
Instrumental Methods |
Qualitative Analysis |
Kinetics
Teaching mass-energy equivalence  Foster, Laurence S.
It is the purpose of this paper to show how the concept of mass-energy equivalence may be introduced in an elementary chemistry course while retaining a focus on chemistry.
Foster, Laurence S. J. Chem. Educ. 1956, 33, 300.
Nuclear / Radiochemistry
Atomic-weight variations in nature  Boggs, James E.
Atoms of the same element may have different masses (due to isotopic differences) depending on their source.
Boggs, James E. J. Chem. Educ. 1955, 32, 400.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Isotopes
Experiments on radioactivity in the first course in college chemistry  Brown, Charles A.; Rochow, E. G.
Experiments described include the detection and measurement of radioactivity; comparing the penetrative power of beta and gamma radiation; separating thorium from uranium; and determining the half-life of iodine 128.
Brown, Charles A.; Rochow, E. G. J. Chem. Educ. 1951, 28, 521.
Nuclear / Radiochemistry |
Isotopes |
Separation Science
Autoradiography as a science project  Huber, William S.
Describes several autoradiography techniques in which photographic plates are exposed to radioactive sources.
Huber, William S. J. Chem. Educ. 1951, 28, 226.
Nuclear / Radiochemistry