TIGER

Journal Articles: 62 results
The History of Element 43—Technetium  Fathi Habashi
The article From Masurium to Trinacrium: The Troubled Story of Element 43 is the best story so far published about the history of technetium. There is, however, one paragraph on the right column of page 226 that is questionable.
Habashi, Fathi. J. Chem. Educ. 2006, 83, 213.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
How Radioactive Is Your Banana?  David W. Ball
This exercise uses a banana to illustrate the level of radioactivity (in this case, from K-40) in an everyday object.
Ball, David W. J. Chem. Educ. 2004, 81, 1440.
Food Science |
Nuclear / Radiochemistry |
Isotopes
Bringing History to the Classroom: Spoofs about Problems in Obtaining Research Grants  Sidney Toby
This article is a spoof on the History of Science and consists of four skits depicting the difficulties famous men and women in science might have had in fictional interviews while seeking funding for their research.
Toby, Sidney. J. Chem. Educ. 2004, 81, 503.
Gases |
Physical Properties |
Nuclear / Radiochemistry |
Women in Chemistry |
Administrative Issues
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
News from Online: Chemistry and Art  Carolyn Sweeney Judd
Web sites devoted to neutron activation analysis, carbon dating, X-ray fluorescence, polarized light spectroscopy, pigments and paints, and the arts in general.
Judd, Carolyn Sweeney. J. Chem. Educ. 2001, 78, 1322.
Dyes / Pigments |
Instrumental Methods |
Nuclear / Radiochemistry
Nucleogenesis! A Game with Natural Rules for Teaching Nuclear Synthesis and Decay  Donald J. Olbris and Judith Herzfeld
Nucleogenesis! is a simple and engaging game designed to introduce undergraduate physics or chemistry students to nuclear synthesis and decay by simulation of these processes. By playing the game, students become more familiar with nuclear reactions and the "geography" of the table of isotopes.
Olbris, Donald J.; Herzfeld, Judith. J. Chem. Educ. 1999, 76, 349.
Isotopes |
Nuclear / Radiochemistry |
Nonmajor Courses
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics  Kent J. Crippen and Robert D. Curtright
A four-part activity utilizing a graphing calculator to investigate nuclear stability is described. Knowledge acquired through the activity provides background for answering the societal question of using nuclear materials for energy production.
Crippen, Kent J.; Curtright, Robert D. J. Chem. Educ. 1998, 75, 1434.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Chemometrics
Radioactivity in Everyday Life  S. G. Hutchison, F. I. Hutchison
This paper discusses the terminology appropriate to radiation exposure and dose, the three sources of natural background radiation (cosmic radiation, cosmogenic radiation, and terrestrial radiation), and several radioactive isotopes that are significant contributors to the radiation exposure received by individuals.
Hutchison, S. G.; Hutchison, F. I. J. Chem. Educ. 1997, 74, 501.
Learning Theories |
Nuclear / Radiochemistry |
Isotopes |
Consumer Chemistry
Simple Rules for Determining Nuclear Stability and Type of Radioactive Decay  Mark L. Campbell
Simple rules for determining nuclear stability and type of radioactive decay.
Campbell, Mark L. J. Chem. Educ. 1995, 72, 892.
Nuclear / Radiochemistry
Cloud Chamber Activities for the High School Classroom  Perry, John Timothy; Sankey, Mary Ann
Instructions for constructing and using an inexpensive cloud chamber; includes student assignments and sample data.
Perry, John Timothy; Sankey, Mary Ann J. Chem. Educ. 1995, 72, 339.
Nuclear / Radiochemistry |
Laboratory Equipment / Apparatus
Teaching Aids For Nuclear Chemistry  Atwood, Charles H.
Listing of topics and sources related to nuclear chemistry, including bibliographies for the Journal and Scientific American.
Atwood, Charles H. J. Chem. Educ. 1994, 71, 845.
Nuclear / Radiochemistry
Nuclear Shapes: From the Mundane to the Exotic  Yates, Steven W.
The shape and stability of atomic nuclei.
Yates, Steven W. J. Chem. Educ. 1994, 71, 837.
Nuclear / Radiochemistry |
Atomic Properties / Structure
High-Sensitivity Gamma Radiation Monitor for Teaching and Environmental Applications  Lyons, R. G.; Crossley, P. C.; Fortune, D.
Design, construction, and calibration of a high-sensitivity gamma radiation monitor.
Lyons, R. G.; Crossley, P. C.; Fortune, D. J. Chem. Educ. 1994, 71, 524.
Nuclear / Radiochemistry |
Laboratory Equipment / Apparatus
Present and Future Nuclear Reactor Designs: Weighing the Advantages and Disadvantages of Nuclear Power with an Eye on Improving Safety and Meeting Future Needs  Miller, Warren F., Jr.
An overview of how nuclear energy is produced on macroscopic and microscopic scales with consideration given to benefits and liabilities of this energy source. The article includes a short look at nuclear power uses overseas and contains information about waste disposal, public opinion, and potential technical improvements.
Miller, Warren F., Jr. J. Chem. Educ. 1993, 70, 109.
Nuclear / Radiochemistry |
Green Chemistry |
Consumer Chemistry |
Applications of Chemistry
Radioactivity: A natural phenomenon  Ronneau, C.
Main points of information and a demonstration regarding radioactivity.
Ronneau, C. J. Chem. Educ. 1990, 67, 736.
Nuclear / Radiochemistry |
Toxicology
A student experiment to demonstrate the energy loss and straggling of electrons in matter  de Bruin, M.; Huijgen, F. W. J.
The experiment described has been applied routinely for several years in introductory courses in the application of radiation and isotopes. The results obtained give direct insight into the characteristics of the phenomena associated with the absorption of energetic electrons in matter.
de Bruin, M.; Huijgen, F. W. J. J. Chem. Educ. 1990, 67, 86.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Isotopes
Predicting nuclear stability using the periodic table  Blanck, Harvey F.
Develops several empirical rules to use with the periodic table as an aid to recalling those nuclides that are stable.
Blanck, Harvey F. J. Chem. Educ. 1989, 66, 757.
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Isotopes
Nuclear chemistry: Include it in your curriculum  Atwood, Charles H.; Sheline, R. K.
This article takes a look at some of the topics that might be included in a nuclear chemistry section of your chemistry course.
Atwood, Charles H.; Sheline, R. K. J. Chem. Educ. 1989, 66, 389.
Nuclear / Radiochemistry
Beta decay diagram   Suder, Robert
Too often instructors believe that students can intuitively understand nuclear decay from balanced equations, but it has been the author's experience that a diagram greatly enhances student knowledge of this process.
Suder, Robert J. Chem. Educ. 1989, 66, 231.
Nuclear / Radiochemistry
Nuclear waste glass, and the Fe2+/Fe3+ ratio  Fanning, James C.; Hunter, R. Todd
These authors present a chemical problem of current interest that can be used for pedagogical purposes.
Fanning, James C.; Hunter, R. Todd J. Chem. Educ. 1988, 65, 888.
Applications of Chemistry |
Consumer Chemistry |
Titration / Volumetric Analysis |
Oxidation State |
Nuclear / Radiochemistry |
Green Chemistry |
Chromatography |
Spectroscopy
Determining the solubility of Ca(OH)2 using 45Ca as a tracer  Edmiston, Michael D.; Suter, Robert W.
These authors have developed a simple lab that can be incorporated into freshman chemistry that allows students to understand the power of radiochemistry as an analytical tool as well as gain perspectives about real versus imagined dangers of radioactivity.
Edmiston, Michael D.; Suter, Robert W. J. Chem. Educ. 1988, 65, 279.
Nuclear / Radiochemistry |
Medicinal Chemistry
Radioactive dating: A method for geochronology  Rowe, M. W.
The discovery of radioactivity, radioactive dating, and various dating methods.
Rowe, M. W. J. Chem. Educ. 1985, 62, 580.
Geochemistry |
Nuclear / Radiochemistry |
Isotopes |
Mass Spectrometry
Nuclear synthesis and identification of new elements  Seaborg, Glenn T.
Review of descriptive terms, nuclear reactions, radioactive decay modes, and experimental methods in nuclear chemistry.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 392.
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Natural sources of ionizing radiation  Bodner, George M.; Rhea, Tony A.
Units of radiation measurement, calculations of radiation dose equivalent, sources of ionizing radiation and its biological effects.
Bodner, George M.; Rhea, Tony A. J. Chem. Educ. 1984, 61, 687.
Natural Products |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols
A method for the determination of half-lives of long lived radioisotopes  Muse, Lowell A.; Safter, Warren J.
It is possible to obtain a rather accurate estimate of the half-life of long-lived radioisotopes by absolute counting of a sample of known mass.
Muse, Lowell A.; Safter, Warren J. J. Chem. Educ. 1982, 59, 431.
Isotopes |
Nuclear / Radiochemistry |
Laboratory Management
Nuclear Energy  Mickey, Charles D.
A brief summary of the history and key concepts of nuclear energy.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 360.
Nuclear / Radiochemistry
A passive nuclear debris collector  Griffin, John J.; Stevens, Ronald L.; Pszenny, Alexander A. P.; Russell, Irving J.
A simple collector that takes advantage of the ability of rain to remove trace radioactive substances from the lower atmosphere.
Griffin, John J.; Stevens, Ronald L.; Pszenny, Alexander A. P.; Russell, Irving J. J. Chem. Educ. 1979, 56, 475.
Nuclear / Radiochemistry |
Laboratory Equipment / Apparatus |
Applications of Chemistry
Nuclear beta decay  Loveland, Walter
135. Most general chemistry textbooks contain serious conceptual errors in their treatment of fundamental nuclear processes.
Loveland, Walter J. Chem. Educ. 1979, 56, 250.
Nuclear / Radiochemistry
Energy from Uranium  J. Chem. Educ. Staff
The realities of nuclear power, fission and fissionable material, the design and operation of nuclear reactors, safety, and uranium resources.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 119.
Nuclear / Radiochemistry |
Applications of Chemistry
Variation of radioactive decay rates  Wolsey, Wayne C.
133. It is stated frequently in introductory chemistry texts that radioactive decay rates are invariant. Students are led to the impression, implicitly, if not explicitly, that changes in chemical form, temperature, pressure, etc. have no effect upon the half-lives of unstable nuclei. This constancy of decay is perhaps true for some particular modes of decay, but by no means is it true for all.
Wolsey, Wayne C. J. Chem. Educ. 1978, 55, 302.
Nuclear / Radiochemistry |
Thermodynamics
Elemental evolution and isotopic composition  Rydberg, J.; Choppin, G. R.
Reviews elemental abundances and the processes of elemental creation.
Rydberg, J.; Choppin, G. R. J. Chem. Educ. 1977, 54, 742.
Astrochemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Isotopes |
Nuclear / Radiochemistry |
Geochemistry
High school/university cooperative experiment: The uptake of nuclear debris by trees  Griffin, John J.; Driscoll, Joseph R.
In a previous publication the detection and identification of airborne nuclear debris from the March 18, 1972 People's Republic of China nuclear test was reported as a useful technique. A followup investigation is documented by members of the freshman science class to determine if nuclear debris from the March 18 nuclear test or other recent tests has been incorporated into the vegetation within their immediate environment.
Griffin, John J.; Driscoll, Joseph R. J. Chem. Educ. 1974, 51, 270.
Nuclear / Radiochemistry
Fusion power  Landis, John W.
Discusses nuclear fission and fusion as energy sources.
Landis, John W. J. Chem. Educ. 1973, 50, 658.
Nuclear / Radiochemistry
Stellar nucleosynthesis. A vehicle for the teaching of nuclear chemistry  Viola, V. E., Jr.
Summarizes the basic properties of matter, stellar evolution and nucleosynthesis, radioactive decay, synthetic and "super-heavy" elements, and radiation in the environment.
Viola, V. E., Jr. J. Chem. Educ. 1973, 50, 311.
Nuclear / Radiochemistry |
Astrochemistry
Radiometric analysis of ammonia in water  Mehra, M. C.
In this experiment, the silver concentration in aqueous solution is determined radiometrically using silver-110 as the radiotracer.
Mehra, M. C. J. Chem. Educ. 1972, 49, 837.
Water / Water Chemistry |
Nuclear / Radiochemistry |
Isotopes |
Aqueous Solution Chemistry |
Quantitative Analysis
Chemistry in art. Radiochemistry and forgery  Rogers, F. E.
It wasn't until a radiochemical analysis in 1968 that a 1937 forgery of a 17th century Dutch master was confirmed as a fake.
Rogers, F. E. J. Chem. Educ. 1972, 49, 418.
Applications of Chemistry |
Nuclear / Radiochemistry |
Isotopes
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Parris, Michael
(1) Explains how free radicals differ from species such as NO3- and NH4+. (2) Explains why HI is a stronger acid than HF in aqueous solution. - answer by Parris. (3) Explains that it is possible to alter the half-life of a some radioactive processes through chemical means.
Young, J. A.; Malik, J. G.; Parris, Michael J. Chem. Educ. 1970, 47, 697.
Free Radicals |
Acids / Bases |
Aqueous Solution Chemistry |
Nuclear / Radiochemistry |
Isotopes
Nuclear concepts as part of the undergraduate chemistry curriculum  Caretto, A. A., Jr.; Sugihara, T. T.
It is proposed that there are distinct advantages to a freshman curriculum that introduces nuclear concepts simultaneously with the discussion of analogous atomic and molecular concepts.
Caretto, A. A., Jr.; Sugihara, T. T. J. Chem. Educ. 1970, 47, 569.
Nuclear / Radiochemistry |
Atomic Properties / Structure
General chemistry demonstrations based on nuclear and radiochemical phenomena  Herber, Rolfe H.
This paper is intended to provide a brief survey of lecture demonstrations, suitable for a general chemistry course, that incorporate some of the ideas, concepts, techniques, and instrumentation of the field of nuclear and radiochemistry.
Herber, Rolfe H. J. Chem. Educ. 1969, 46, 665.
Nuclear / Radiochemistry |
Isotopes
The principle of exponential change: Applications in chemistry, biochemistry, and radioactivity  Green, Frank O.
Examines the nature of exponential change and its applications to chemistry, biochemistry, and radioactivity, including radioactive decay, enzyme kinetics, colorimetry, spectrophotometry, and first order reaction kinetics.
Green, Frank O. J. Chem. Educ. 1969, 46, 451.
Nuclear / Radiochemistry |
Kinetics |
Enzymes |
Spectroscopy
Radioisotope generators for introductory laboratory use  Crater, H. L.; Macchione, J. B.; Gemmill, W. J.; Kramer, H. H.
Describes the use of simple radioisotope generators in 23 different experiments involving nuclear theory.
Crater, H. L.; Macchione, J. B.; Gemmill, W. J.; Kramer, H. H. J. Chem. Educ. 1969, 46, 287.
Nuclear / Radiochemistry |
Isotopes |
Laboratory Equipment / Apparatus
The disposal of chemical and radioactive waste - Part two  Pearsall, S. G.; Wilshusen, W.
Discusses procedures for the disposal of radioactive wastes.
Pearsall, S. G.; Wilshusen, W. J. Chem. Educ. 1968, 45, A677.
Laboratory Management |
Nuclear / Radiochemistry
A simple stand for the determination of alpha particle range  Borke, Mitchell L.
This short note describes a simple stand for the determination of alpha particle range and energy.
Borke, Mitchell L. J. Chem. Educ. 1967, 44, 390.
Nuclear / Radiochemistry |
Laboratory Equipment / Apparatus
Solubility in mixed solvents: A radiochemistry experiment  Lochmuller, C.; Cefola, M.
This experiment illustrates the use of radioisotopes in a solubility measurement and demonstrates the effect of solvent dielectric on solubility.
Lochmuller, C.; Cefola, M. J. Chem. Educ. 1964, 41, 604.
Nuclear / Radiochemistry |
Isotopes |
Precipitation / Solubility
Demonstration of a parent-daughter radioactive equilibrium using 137Cs-137mBa  Choppin, Gregory R.; Nealy, Carson L.
Demonstrates the relationship between radioactive half life and both the rate of decay and growth of a radioactive daughter.
Choppin, Gregory R.; Nealy, Carson L. J. Chem. Educ. 1964, 41, 598.
Isotopes |
Nuclear / Radiochemistry |
Equilibrium |
Rate Law
Dating of uranium minerals by the specific radioactivity of lead  Fairhall, A. W.
This paper discusses a method for estimating the age of a uranium mineral without recourse to elaborate mass-spectrometric techniques and presents an experimental procedure for doing so.
Fairhall, A. W. J. Chem. Educ. 1963, 40, 626.
Nuclear / Radiochemistry |
Isotopes |
Geochemistry
Incorporating radioisotope techniques into the chemistry curriculum  Radin, Norman S.
Presents a list of radioisotope experiments suitable for a wide range of different domains and levels in chemistry.
Radin, Norman S. J. Chem. Educ. 1961, 38, 344.
Nuclear / Radiochemistry |
Isotopes
Nuclear and radiochemistry in the curriculum in general chemistry  Garrett, A. B.
The author summarizes how he integrates nuclear and radiochemistry into the general chemistry curriculum.
Garrett, A. B. J. Chem. Educ. 1960, 37, 384.
Nuclear / Radiochemistry |
Isotopes
Letters  Hendricks, B. Clifford
A brief examination of the way in which general chemistry textbooks portray the emission of alpha, beta, and gamma rays.
Hendricks, B. Clifford J. Chem. Educ. 1960, 37, 161.
Nuclear / Radiochemistry
A half-life experiment for general chemistry students  Smith, W. T.; Wood, J. H.
This paper describes the authors' experiences with the measurement of the half-life of bismuth-210.
Smith, W. T.; Wood, J. H. J. Chem. Educ. 1959, 36, 492.
Nuclear / Radiochemistry |
Isotopes
Use of radioisotopes in the college chemistry laboratory  Phillips, David; Maybury, Robert H.
Provides experiments and experiences working with constructed Geiger counters and radioisotopes.
Phillips, David; Maybury, Robert H. J. Chem. Educ. 1959, 36, 133.
Nuclear / Radiochemistry |
Isotopes |
Instrumental Methods |
Qualitative Analysis |
Kinetics
Nuclear batteries  Garrett, Alfred B.
Describes the structure, operation, and application of nuclear batteries.
Garrett, Alfred B. J. Chem. Educ. 1956, 33, 446.
Nuclear / Radiochemistry |
Electrochemistry
Teaching mass-energy equivalence  Foster, Laurence S.
It is the purpose of this paper to show how the concept of mass-energy equivalence may be introduced in an elementary chemistry course while retaining a focus on chemistry.
Foster, Laurence S. J. Chem. Educ. 1956, 33, 300.
Nuclear / Radiochemistry
A demonstration fog chamber  Slabaugh, W. H.
Presents a diagram of a glass-enclosed box to be used as a fog chamber for examining the tracks of subatomic particles.
Slabaugh, W. H. J. Chem. Educ. 1955, 32, 269.
Nuclear / Radiochemistry
The relative contributions of various elements to the earth's radioactivity  Asimov, Isaac
Describes relative contributions of various elements to the earth's radioactivity.
Asimov, Isaac J. Chem. Educ. 1954, 31, 24.
Nuclear / Radiochemistry |
Geochemistry |
Isotopes
Dating with carbon 14  Kulp, J. Laurence
Examines the principles, technique, results of and problems with radioactive dating using carbon-14.
Kulp, J. Laurence J. Chem. Educ. 1953, 30, 432.
Nuclear / Radiochemistry |
Isotopes
A continuous cloud chamber  Kuehner, A. L.
Details the construction and use of a continuous cloud chamber.
Kuehner, A. L. J. Chem. Educ. 1952, 29, 511.
Laboratory Equipment / Apparatus |
Nuclear / Radiochemistry
Radiations from radioactive materials  Orban, Edward
Lists many radioactive minerals and ores and their sources and describes some simple demonstrations of radioactivity.
Orban, Edward J. Chem. Educ. 1952, 29, 289.
Nuclear / Radiochemistry |
Isotopes
Experiments on radioactivity in the first course in college chemistry  Brown, Charles A.; Rochow, E. G.
Experiments described include the detection and measurement of radioactivity; comparing the penetrative power of beta and gamma radiation; separating thorium from uranium; and determining the half-life of iodine 128.
Brown, Charles A.; Rochow, E. G. J. Chem. Educ. 1951, 28, 521.
Nuclear / Radiochemistry |
Isotopes |
Separation Science
Autoradiography as a science project  Huber, William S.
Describes several autoradiography techniques in which photographic plates are exposed to radioactive sources.
Huber, William S. J. Chem. Educ. 1951, 28, 226.
Nuclear / Radiochemistry