TIGER

Journal Articles: 26 results
Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?  Jean François LeMaréchal
Uses the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object.
LeMaréchal, Jean François. J. Chem. Educ. 2008, 85, 433.
Chirality / Optical Activity |
Coordination Compounds |
Enantiomers |
Group Theory / Symmetry |
Stereochemistry |
Transition Elements
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
The Discovery and Development of Cisplatin  Rebecca A. Alderden, Matthew D. Hall, and Trevor W. Hambley
Cisplatin is currently one of the most widely used anticancer drugs in the world. The unlikely events surrounding the discovery of its anticancer activity, subsequent introduction into the clinic, and the continuing research into platinum compounds is the subject of this review.
Alderden, Rebecca A.; Hall, Matthew D.; Hambley, Trevor W. J. Chem. Educ. 2006, 83, 728.
Bioinorganic Chemistry |
Coordination Compounds |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Metallic Bonding |
Oxidation State |
Synthesis
Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number  Derek W. Smith
It is argued that the terms valence, covalence, hypervalence, oxidation state, and coordination number are often confused and misused in the literature. It is recommended that use of the term valence, and its associated terminology, should be restricted to simple molecular main group substances and to some oxoacids and derivatives, but avoided in both main group and transition element coordination chemistry.
Smith, Derek W. J. Chem. Educ. 2005, 82, 1202.
Coordination Compounds |
Covalent Bonding |
Main-Group Elements |
Oxidation State
Acid-Base Chemistry of the Aluminum Ion in Aqueous Solution  Edward Koubek
A demonstration of the amphoteric behavior of aluminum is given based on an older report that was given many years ago.
Koubek, Edward. J. Chem. Educ. 1998, 75, 60.
Coordination Compounds |
Equilibrium |
Acids / Bases |
Aqueous Solution Chemistry
Infrared Spectroscopy: A Versatile Tool in Practical Chemistry Courses   Volker Wiskam, Wolfgang Fichtner, Volker Kramb, Alexander Nintschew, and Jens Stefan Schneider
Procedure for preparing samples of basic inorganic compounds and analyzing them through IR spectroscopy in freshman chemistry.
Wiscamp, Volker; Fichtner, Wolfgang; Kramb, Volker; Nintschew, Alexander; Schneider, Jens Stefan. J. Chem. Educ. 1995, 72, 952.
IR Spectroscopy |
Synthesis |
Coordination Compounds
Bonding theory/ The Werner-Jorgensen controversy  Whisnant, David M.
A review of a two-part simulation introducing students to the history of the development of bond theories.
Whisnant, David M. J. Chem. Educ. 1993, 70, 902.
Coordination Compounds
"Qual": From a different viewpoint  Laing, Michael
Author contends that traditional teaching techniques in inorganic chemistry need to be reconsidered.
Laing, Michael J. Chem. Educ. 1993, 70, 666.
Periodicity / Periodic Table |
Metals |
Qualitative Analysis |
Coordination Compounds
Synthesis, oxidation and UV/IR spectroscopy illustrated: An integrated freshman lab session   Zoller, Uri; Lubezky, Aviva; Danot, Miriam
This paper describes a specially designed, and successfully implemented lab-session for the first-year college general chemistry course.
Zoller, Uri; Lubezky, Aviva; Danot, Miriam J. Chem. Educ. 1991, 68, A274.
IR Spectroscopy |
UV-Vis Spectroscopy |
Coordination Compounds |
Metals
Preparation of a simple thermochromic solid  Van Oort, Michiel J. M.
An easy, dramatic, and effective laboratory introduction to solid-solid phase transitions, thermochromism, and color changes associated with changes in ligand coordination suitable for undergraduate students in physical and general chemistry.
Van Oort, Michiel J. M. J. Chem. Educ. 1988, 65, 84.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Coordination Compounds |
Metals |
Thermodynamics
Werner and Jorgensen: Presenting history with a computer  Whisnant, David M.
85. A computer simulation designed to illustrate the process of science - how theories develop, how change occurs, and how scientists behave.
Whisnant, David M. J. Chem. Educ. 1987, 64, 688.
Molecular Properties / Structure |
Coordination Compounds
A tale of two elements  Nelson, P. G.
Readers are invited to identify elements A and B from the descriptions in this article.
Nelson, P. G. J. Chem. Educ. 1986, 63, 1021.
Oxidation State |
Organometallics |
Coordination Compounds |
Descriptive Chemistry |
Magnetic Properties
Models to depict hybridization of atomic orbitals  Stubblefield, C. T.
Six models of hybridization: linear, trigonal, tetrahedral, planar, trigonal bipyrimidal, and octahedral.
Stubblefield, C. T. J. Chem. Educ. 1984, 61, 158.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Coordination Compounds
Inorganic thermochromism: A lecture demonstration of a solid state phase transition  Willett, Roger D.
A description of an activity using thermochromic material is an easy way to demonstrate solid state phase transition.
Willett, Roger D. J. Chem. Educ. 1983, 60, 355.
Phases / Phase Transitions / Diagrams |
Solid State Chemistry |
Coordination Compounds
Some aspects of coordination chemistry   Mickey, Charles D.
The genesis of modern coordination theory; the Wernerian system; experimental support for Werner's coordination theory; amplification of Werner's theory; the nature of complex ions; formation and nomenclature for complexes, complexes in the environment; chelates in medicine; complexing in natural systems; and industrial application of complexes.
Mickey, Charles D. J. Chem. Educ. 1981, 58, 257.
Coordination Compounds |
Medicinal Chemistry |
Metals
Magnetic and spectral behavior of Co(py)2X2 complexes. A teaching experiment  Webb, D. L.; Meek, T. L.
The pedagogical merit of this experiment is two-fold: a considerable portion of the syllabus is covered and there is a requirement for students to collaborate and discuss.
Webb, D. L.; Meek, T. L. J. Chem. Educ. 1978, 55, 408.
Spectroscopy |
Magnetic Properties |
Coordination Compounds |
Organometallics
Model to illustrate bonding and symmetry of transition metal complexes  Betteridge, D.
Describes a physical model used to demonstrate the combination of atomic orbitals of the transition metal ion with those on surrounding ligands to give molecular orbitals.
Betteridge, D. J. Chem. Educ. 1970, 47, 824.
Transition Elements |
Metals |
Coordination Compounds |
Molecular Modeling |
Atomic Properties / Structure |
Group Theory / Symmetry
Hydrogen sulfide under any other name still smells. A poisonous story  Brasted, Robert C.
The chemistry of hydrogen sulfide affords an excellent opportunity to integrate descriptive inorganic and coordination chemistry with biochemistry.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 574.
Descriptive Chemistry |
Molecular Properties / Structure |
Coordination Compounds |
Enzymes |
Proteins / Peptides
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A.
(1) When is the rule valid that the rate of reaction approximately doubles with a ten-degree temperature rise? - answer by House. (2) On the colors of transition metal complexes. (3) On an electrolysis experiment in which an acid solution is used to minimize the hydrolysis of Cu 2+. - answer by Campbell.
Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A. J. Chem. Educ. 1969, 46, 674.
Rate Law |
Kinetics |
Transition Elements |
Coordination Compounds |
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases
Atomic structure. Radioactivity (continued)   Alyea, Hubert N.
Formation of the complex Cu(NH3)4++ as an example of coordinate covalent bonding and hydrogen bonding as evidenced by viscosity.
Alyea, Hubert N. J. Chem. Educ. 1967, 44, A599.
Coordination Compounds |
Covalent Bonding |
Hydrogen Bonding |
Liquids
Simplified d orbital models assist in teaching coordination concepts  Nicholson, Douglas G.
Presents a three-dimensional model, containing representatives of all lobes of the five d orbitals, prepared for each of the tetrahedral, square planar, and octahedral coordination configurations.
Nicholson, Douglas G. J. Chem. Educ. 1965, 42, 148.
Atomic Properties / Structure |
Coordination Compounds
I - Ligand field theory  Cotton, F. Albert
Examines the causes and consequences of inner orbital splittings, stereochemical consequences, and the visible spectra of transition metal compounds. [Debut]
Cotton, F. Albert J. Chem. Educ. 1964, 41, 466.
Crystal Field / Ligand Field Theory |
Coordination Compounds |
Transition Elements
Preparation and analysis of a complex compound  Sebera, Donald K.
A cobalt/ammonia complex is prepared and analyzed in a freshman chemistry laboratory.
Sebera, Donald K. J. Chem. Educ. 1963, 40, 476.
Synthesis |
Coordination Compounds |
Transition Elements
Coordination chemistry in general chemistry texts  Clark, Roy W.; Selbin, Joel
Presents the results of a survey of 36 college general chemistry texts with respect to the degree to which they examine the chemistry of coordination compounds.
Clark, Roy W.; Selbin, Joel J. Chem. Educ. 1961, 38, 466.
Coordination Compounds
Inorganic coordination compounds in general chemistry  Kirschner, Stanley
Argues that coordination chemistry is an important part of general chemistry and identifies several places in the general chemistry course where the topic of coordination compounds can be conveniently presented.
Kirschner, Stanley J. Chem. Educ. 1958, 35, 139.
Coordination Compounds
Lone pair electrons  Fowles, Gerald W. A.
The lone pair electrons, whether in simple or hybrid orbitals, have profound effects on the properties of the molecule; these effects may be discussed as bond angles, dipole moments, bond energies and lengths, and coordination and hydrogen bonding.
Fowles, Gerald W. A. J. Chem. Educ. 1957, 34, 187.
Atomic Properties / Structure |
Covalent Bonding |
Coordination Compounds |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure