TIGER

Journal Articles: 26 results
Yet Another Variation on the Electrolysis of Water at Iron Nails  Mark T. Stauffer and Justin P. Fox
Describes a variation on the electrolysis of water with iron nails in which a sharp contrast in the colors produced effectively demonstrates electrolysis and the diffusion of oxidized and reduced species from the electrodes.
Stauffer, Mark T.; Fox, Justin P. J. Chem. Educ. 2008, 85, 523.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry |
Electrolytic / Galvanic Cells / Potentials
Demonstration Extensions: Flame Tests and Electrolysis  Ed Vitz
Provides suggestions to supplement traditional demonstrations involving flame tests and water hydrolysis.
Vitz, Ed. J. Chem. Educ. 2008, 85, 522.
Alcohols |
Electrolytic / Galvanic Cells / Potentials
Exploring Faraday's Law of Electrolysis Using Zinc–Air Batteries with Current Regulative Diodes  Masahiro Kamata and Miei Paku
Describes a new educational experiment using low-cost zinc┬Łair batteries and current regulative diode arrays to quickly confirm Faraday's law of electrolysis.
Kamata, Masahiro; Paku, Miei. J. Chem. Educ. 2007, 84, 674.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Oxidation / Reduction
Small-Scale and Low-Cost Electrodes for "Standard" Reduction Potential Measurements  Per-Odd Eggen, Lise Kvittingen, and Truls Grønneberg
This article describes how to construct three simple and inexpensive, microchemistry electrodes: hydrogen, chlorine, and copper.
Eggen, Per-Odd; Grønneberg, Truls; Kvittingen, Lise. J. Chem. Educ. 2007, 84, 671.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Microscale Lab |
Student-Centered Learning
Electrode Processes and Aspects Relating to Cell EMF, Current, and Cell Components in Operating Electrochemical Cells: Precollege and College Student Interpretation  N. A. Ogude and J. D. Bradleu
Four areas that present difficulty among high school pupils and tertiary level students in relation to the processes that take place in operating electrochemical cells were identified, including conduction in the electrolyte, electrical neutrality, electrode processes and terminology, and aspects relating to cell emf, current, and cell components. A 20-item questionnaire was designed to determine how widespread misconceptions in these areas were.
Ogude, N. A.; Bradley, J. D. J. Chem. Educ. 1996, 73, 1145.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Ionic Conduction and Electrical Neutrality in Operating Electrochemical Cells: Pre-College and College Student Interpretations  Ogude, A. N.; Bradley, J. D.
Results of an investigation on pre-college and college student difficulties regarding the qualitative interpretation of the microscopic processes that take place in operating chemical cells.
Ogude, A. N.; Bradley, J. D. J. Chem. Educ. 1994, 71, 29.
Conductivity |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Chemical Demonstrations: A Handbook for Teachers of Chemistry, Volume 4 (Shakhashiri, Bassam Z.)  Kauffman, George B.
78 procedures grouped into two chapters, one on clock reactions, the other on electrochemistry, batteries, electrolytic cells, and plating.
Kauffman, George B. J. Chem. Educ. 1992, 69, A187.
Reactions |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The anode and the sunrise.  Mierzecki, Roman.
Etymology of the terms anode and cathode.
Mierzecki, Roman. J. Chem. Educ. 1992, 69, 657.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Nomenclature / Units / Symbols
Electrochemical conventions: Responses to a provocative opinion (6)  Martin-Sanchez, M.; Martin-Sanchez, MaT
The solution may be to use the etymological meaning of anode and cathode.
Martin-Sanchez, M.; Martin-Sanchez, MaT J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (5)  Sweeting, Linda M.
The chemical potential of the electrons, not their "richness" determines direction of flow.
Sweeting, Linda M. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (4)  Fochi, Giovanni
It is sufficient to show what part of the circuit is the electric generator.
Fochi, Giovanni J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (3)  Woolf, A. A.
There are no shortcuts in teaching the electrochemistry of galvanic cells; the process in each cell must be treated holistically.
Woolf, A. A. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (2)  Castellan, Gilbert W.
The difficulty is not so much confusion over conventions as the actual wrong use of terminology.
Castellan, Gilbert W. J. Chem. Educ. 1990, 67, 991.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (1)  Freeman, Robert D.
There is no convincing evidence of confusion regarding electrochemical conventions and the author's proposed solutions are unacceptable.
Freeman, Robert D. J. Chem. Educ. 1990, 67, 990.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Construction and evaluation of an inexpensive reference electrode with internal electrolyte in agar matrix  Victoria, Leandro; Ortega, M. Gloria; Ibanez, Jose A.
In this paper the authors show how to construct a reference electrode of Ag/AgCl with an internal electrolyte in agar matrix.
Victoria, Leandro; Ortega, M. Gloria; Ibanez, Jose A. J. Chem. Educ. 1990, 67, 179.
Electrolytic / Galvanic Cells / Potentials |
Electrochemistry |
Laboratory Equipment / Apparatus
Experimental work with tin(II) chloride in a high school   Sanchez, Manuela Martin
The author describes a final-project performed by students that integrates concepts of hydrolysis, Le Chatelier's principle, and electrolysis. Students seek answers to questions such as: "What reactions were involved; why is an aqueous solution of SnCl2 acidic; how can elemental tin be recovered from the system?"
Sanchez, Manuela Martin J. Chem. Educ. 1988, 65, 898.
Separation Science |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium |
Oxidation / Reduction
More electrolysis experiments for the overhead projector  Kolb, Kenneth E.
Electrolytic cell made up of two 9-V batteries and suggestions for the electrolysis of several different materials.
Kolb, Kenneth E. J. Chem. Educ. 1987, 64, 891.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrodeposition of nickel on copper  Manjkow, Joseph; Levine, Dana
In the classroom, one can demonstrate electroplating by the simple, fast, inexpensive, and visually interesting reaction between nickel ions and copper metal.
Manjkow, Joseph; Levine, Dana J. Chem. Educ. 1986, 63, 809.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction
Electrochemistry in the general chemistry curriculum  Chambers, James Q.
Students in introductory chemistry courses at large universities do not develop sufficient understanding of electrochemical phenomenon. From State-of-the-Art Symposium: Electrochemistry, ACS meeting, Kansas City, 1982.
Chambers, James Q. J. Chem. Educ. 1983, 60, 259.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Mysterious stoichiometry  Bowman, L. H.; Shull, C. M.
The student's task in this experiment is to determine the composition of a compound of chromium produced in an electrolytic cell.
Bowman, L. H.; Shull, C. M. J. Chem. Educ. 1975, 52, 186.
Titration / Volumetric Analysis |
Quantitative Analysis |
Stoichiometry |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The presentation of electrode potentials using an energy level diagram  Pinfold, T. A.
The tabular form in which standard electrode potentials are usually presented often leads to confusion that can be diminished by representing the electrochemical series on an energy diagram like that provided.
Pinfold, T. A. J. Chem. Educ. 1972, 49, 506.
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A.
(1) When is the rule valid that the rate of reaction approximately doubles with a ten-degree temperature rise? - answer by House. (2) On the colors of transition metal complexes. (3) On an electrolysis experiment in which an acid solution is used to minimize the hydrolysis of Cu 2+. - answer by Campbell.
Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A. J. Chem. Educ. 1969, 46, 674.
Rate Law |
Kinetics |
Transition Elements |
Coordination Compounds |
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases
Ionization, electricity. B. Production of electricity. C. Consumption of electricity.  Jackman, Kenneth; Ulery, Denver; Rogers, Crosby; Hornbeck, LeRoy G.; Barnard, Robert; Alyea, Hubert N.; Jackman, Kenneth V.; Burke, Christie
Demonstrations include the hydrogen electrode, H-electrode generating its own H2, consumption of electricity, Zn-Cu coupling, overvoltage, the Faraday effect, lead storage battery, and the electrolysis of NaCl.
Jackman, Kenneth; Ulery, Denver; Rogers, Crosby; Hornbeck, LeRoy G.; Barnard, Robert; Alyea, Hubert N.; Jackman, Kenneth V.; Burke, Christie J. Chem. Educ. 1966, 43, A658.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
An experiment with galvanic cells: For the general chemistry laboratory  Dillard, Clyde R.; Kammeyer, Patty Hall
Describes a simple, low-cost galvanic cell and its use to compare various metallic electrodes.
Dillard, Clyde R.; Kammeyer, Patty Hall J. Chem. Educ. 1963, 40, 363.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Metals
Some demonstrations with the overhead projector  Keenan, C. W.
This paper describes the construction and use of demonstration apparatus to be used in conjunction with an overhead projector.
Keenan, C. W. J. Chem. Educ. 1958, 35, 36.
Electrochemistry |
Gases |
Electrolytic / Galvanic Cells / Potentials |
Transport Properties
Combining half-reactions and their standard electrode potentials  Miller, Sidney I.
To increase the value of standard electrode potential tables, a new method of combination of half-cell reactions is proposed.
Miller, Sidney I. J. Chem. Educ. 1952, 29, 140.
Electrochemistry |
Aqueous Solution Chemistry |
Electrolytic / Galvanic Cells / Potentials