TIGER

Journal Articles: 42 results
Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment  Kenneth V. Mills, Richard S. Herrick, Louise W. Guilmette, Lisa P. Nestor, Heather Shafer, and Mauri A. Ditzler,
Within the framework of a laboratory-focused, guided-inquiry pedagogy, students discover the Nernst equation, the spontaneity of galvanic cells, concentration cells, and the use of electrochemical data to calculate equilibrium constants.
Mills, Kenneth V.; Herrick, Richard S.; Guilmette, Louise W.; Nestor, Lisa P.; Shafer, Heather;Ditzler, Mauri A. J. Chem. Educ. 2008, 85, 1116.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
The Use of Conjugate Charts in Transfer Reactions: A Unified Approach  Michael I. Allnutt
Redox reactions are discussed in terms of the relative strengths of the oxidant, the reductant, and their conjugates; a conjugate chart is a convenient and useful way of doing this. A similar chart for acids and bases that can be applied in the same manner is proposed.
Allnutt, Michael I. J. Chem. Educ. 2007, 84, 1659.
Acids / Bases |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Brønsted-Lowry Acids / Bases
Redox Titration of Ferricyanide to Ferrocyanide with Ascorbic Acid: Illustrating the Nernst Equation and Beer–Lambert Law  Tina H. Huang, Gail Salter, Sarah L. Kahn, and Yvonne M. Gindt
In this simple experiment, which illustrates the Nernst equation and BeerLambert law, students monitor the reduction of ferricyanide ion to ferrocyanide electrochemically and spectrophoto-metrically upon titration with ascorbic acid. The Nernst equation is used to calculate the standard reduction potential of the redox couple at pH 7 and the number of electrons transferred.
Huang, Tina H.; Salter, Gail; Kahn, Sarah L.; Gindt, Yvonne M. J. Chem. Educ. 2007, 84, 1461.
Coordination Compounds |
Electrochemistry |
Potentiometry |
Spectroscopy |
UV-Vis Spectroscopy
Small-Scale and Low-Cost Electrodes for "Standard" Reduction Potential Measurements  Per-Odd Eggen, Lise Kvittingen, and Truls Grønneberg
This article describes how to construct three simple and inexpensive, microchemistry electrodes: hydrogen, chlorine, and copper.
Eggen, Per-Odd; Grønneberg, Truls; Kvittingen, Lise. J. Chem. Educ. 2007, 84, 671.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Microscale Lab |
Student-Centered Learning
Effectiveness of Conceptual Change-Oriented Teaching Strategy To Improve Students' Understanding of Galvanic Cells  Ali Riza Özkaya, Musa Üce, Hakan Sariçayir, and Musa Sahin
This article presents efforts to develop a conceptual change-oriented strategy to teaching galvanic cells in electrochemistry. The objective is to assess the effectiveness of conceptual change-oriented instruction relative to conventional instruction using statistical comparisons.
Özkaya, Ali Riza; Üce, Musa; Sariçayir, Hakan; Sahin, Musa. J. Chem. Educ. 2006, 83, 1719.
Electrochemistry |
Equilibrium |
Oxidation / Reduction |
Undergraduate Research
Predicting Inorganic Reaction Products: A Critical Thinking Exercise in General Chemistry  David G. DeWit
Describes a course module designed to afford practice in applying the principles encountered throughout the general chemistry sequence to understanding and predicting chemical reactivity and the products of simple inorganic reactions.
DeWit, David G. J. Chem. Educ. 2006, 83, 1625.
Acids / Bases |
Descriptive Chemistry |
Learning Theories |
Metals |
Nonmetals |
Oxidation / Reduction |
Periodicity / Periodic Table |
Reactions
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
Isolation of Copper from a 5–Cent Coin. An Example of Electrorefining  Steven G. Sogo
The United States 5cent coin, commonly known as a "nickel", is made of an alloy containing 75% copper and 25% nickel. The experiment is a visually appealing illustration of the process of electrorefining using selective reduction.
Sogo, Steven G. J. Chem. Educ. 2004, 81, 530.
Electrochemistry |
Oxidation / Reduction |
Metals
Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells  Ali Riza Özkaya
Study of prospective teachers' conceptual understanding of topics in electrochemistry.
Özkaya, Ali Riza. J. Chem. Educ. 2002, 79, 735.
Electrochemistry |
Equilibrium |
Electrolytic / Galvanic Cells / Potentials
Observations on Lemon Cells  Jerry Goodisman
The lemon cell, consisting of pieces of two different metals stuck into a lemon or other fruit, is pictured in many general chemistry textbooks without being discussed; manuscript describes simple experiments, suitable for the general chemistry laboratory, which elucidate how this kind of cell works.
Goodisman, Jerry. J. Chem. Educ. 2001, 78, 516.
Electrochemistry |
Metals |
Electrolytic / Galvanic Cells / Potentials
An Analysis of College Chemistry Textbooks As Sources of Misconceptions and Errors in Electrochemistry  Michael J. Sanger and Thomas J. Greenbowe
The oxidation-reduction and electrochemistry chapters of 10 introductory college chemistry textbooks were reviewed for misleading or erroneous statements, using a list of student misconceptions. As a result of this analysis, we provide suggestions for chemistry instructors and textbook authors.
Sanger, Michael J.; Greenbowe, Thomas J. J. Chem. Educ. 1999, 76, 853.
Electrochemistry |
Oxidation / Reduction |
Learning Theories
Student Construction of a Gel-Filled Ag/AgCl Reference Electrode for Use in a Potentiometric Titration  James M. Thomas
Instructions for the preparation of a Ag/AgCl "reference"-type electrode that uses a gel-type matrix are given. In addition, construction steps are provided for a very sturdy Pt-nichrome "inert" electrode, which can be used many times. Together, these two electrodes, along with a multivoltmeter, have been used successfully to determine the percent of iron in Fe(NH4)2(SO4)2 and in Fe2O2 unknowns purchased commercially.
Thomas, James M. J. Chem. Educ. 1999, 76, 97.
Instrumental Methods |
Electrochemistry |
Quantitative Analysis |
Oxidation / Reduction |
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis
Students' Misconceptions in Electrochemistry Regarding Current Flow in Electrolyte Solutions and the Salt Bridge  Michael J. Sanger and Thomas J. Greenbowe
Several researchers have documented students' misconceptions in electrochemistry. One reason for the interest in studying electrochemistry is that surveys of students and teachers suggest that students find this topic difficult and research confirms that students' beliefs about problem complexity affect their performance and learning.
Sanger, Michael J.; Greenbowe, Thomas J. J. Chem. Educ. 1997, 74, 819.
Learning Theories |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Redox Challenges (the author replies)  Stout, Roland
Algebraic solution to balancing a redox equation.
Stout, Roland J. Chem. Educ. 1996, 73, A227.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Redox Challenges (2)  Zaugg, Noel S.
Algebraic solution to balancing a redox equation.
Zaugg, Noel S. J. Chem. Educ. 1996, 73, A226.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
Redox Challenges (1)  Hart, David M.
Algebraic solution to balancing a redox equation.
Hart, David M. J. Chem. Educ. 1996, 73, A226.
Stoichiometry |
Oxidation / Reduction |
Oxidation State
The "Golden Penny" Demonstration: An Explanation of the Old Experiment and the Rational Design of the New and Simpler Demonstration.  Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz
An explanation and simpler/safer design for the classical "gold penny" demonstration.
Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz J. Chem. Educ. 1995, 72, 386.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The electrician's multimeter in the chemistry teaching laboratory: Part 2: Potentiometry and conductimetry  Sevilla, Fortunato, III; Alfonso, Rafael L.; Andres, Roberto T.
Further applications of the multimeter in chemistry laboratories are discussed in this paper: potentiometry, reduction potentials and cell EMF, the Nerst equations, pH measurements, titration, conductimetry, and conduction of solutions.
Sevilla, Fortunato, III; Alfonso, Rafael L.; Andres, Roberto T. J. Chem. Educ. 1993, 70, 580.
Acids / Bases |
Solutions / Solvents |
Titration / Volumetric Analysis |
Electrochemistry |
Laboratory Equipment / Apparatus |
Potentiometry
The computer as student: An application of artificial intelligence  Birk, James P.
The author describes how the development of computer software to teach about chemical reactivity also provides information about how we should teach several topics in general chemistry.
Birk, James P. J. Chem. Educ. 1992, 69, 294.
Oxidation / Reduction |
Acids / Bases
Electrochemical measurements in general chemistry lab using a student-constructed Ag-AgCl reference electrode  Ahn, M. K.; Reuland, D. J.; Chadd, K. D.
This paper describes a simple method of making a reproducible and durable reference electrode for use by freshmen chemistry students.
Ahn, M. K.; Reuland, D. J.; Chadd, K. D. J. Chem. Educ. 1992, 69, 74.
Electrochemistry |
Laboratory Equipment / Apparatus
Redox demonstrations and descriptive chemistry: Part 3. Copper (I)-copper(II) equilibria   Ophardt, Charles E.
The unusual redox properties of copper (I) and copper (II) ions explained and illustrated.
Ophardt, Charles E. J. Chem. Educ. 1991, 68, 248.
Descriptive Chemistry |
Oxidation State |
Oxidation / Reduction
Reactivity of nickel  Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri
A series of experiments which lead to observations about the reactivity of nickel. [Debut]
Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri J. Chem. Educ. 1991, 68, 48.
Reactions |
Quantitative Analysis |
Coordination Compounds |
Oxidation State |
Electrochemistry
An effective approach to teaching electrochemistry  Birss, Viola I.; Truax, D. Rodney
By interweaving concepts from thermodynamics and chemical kinetics with those of electrochemical measurement, the authors provide students with an enriched appreciation of the utility of ideas from kinetics and thermodynamics.
Birss, Viola I.; Truax, D. Rodney J. Chem. Educ. 1990, 67, 403.
Electrochemistry |
Kinetics |
Thermodynamics
Redox demonstrations and descriptive chemistry: Part 2. Halogens  Ophardt, Charles E.
Oxidation states of bromine and iodine.
Ophardt, Charles E. J. Chem. Educ. 1987, 64, 807.
Oxidation / Reduction |
Descriptive Chemistry |
Oxidation State
Redox demonstrations and descriptive chemistry: Part 1. Metals  Ophardt, Charles E.
The oxidation states of iron, tin, and mercury.
Ophardt, Charles E. J. Chem. Educ. 1987, 64, 716.
Metals |
Descriptive Chemistry |
Oxidation / Reduction |
Oxidation State
Goals in teaching electrochemistry  Maloy, J. T.
Important concepts regarding the subject of electrochemistry.
Maloy, J. T. J. Chem. Educ. 1985, 62, 1018.
Electrochemistry
Electrochemistry  Perkins, Ronald I.
Why electrochemistry is important.
Perkins, Ronald I. J. Chem. Educ. 1985, 62, 1018.
Electrochemistry
Estimating the one electron reduction potential for vanadium (V) by chemical techniques: An experiment for general chemistry  Wentworth, R. A. D.
Procedure requires no electrochemical equipment because the method depends solely upon observations of the spontaneity of the reactions of V(V) with a series of potential reducing agents and V(IV) with a series of potential oxidizing agents.
Wentworth, R. A. D. J. Chem. Educ. 1985, 62, 440.
Oxidation State |
Oxidation / Reduction |
Electrochemistry
Reduction potentials and hydrogen overvoltage: An overhead projector demonstration  Ramette, Richard W.
Relates the scale of standard reduction potentials to the observed behavior of metals in their reactions with hydrogen ion to produce hydrogen gas.
Ramette, Richard W. J. Chem. Educ. 1982, 59, 866.
Electrochemistry |
Metals |
Oxidation / Reduction
Corrosion: A Waste of energy  J. Chem. Educ. Staff
Thermodynamics and electrochemical aspects of corrosion, and inhibition of the corrosion process.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 673.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Thermodynamics |
Electrochemistry
Acid-base half-reactions - A useful formalism for review lessons  Atkinson, G. F.
An effective way to draw analogies between acid-base and redox effects while reviewing both.
Atkinson, G. F. J. Chem. Educ. 1979, 56, 238.
Oxidation / Reduction |
Reactions |
Acids / Bases |
Enrichment / Review Materials
White to rose and return: A multipurpose demonstration  Olson, Edwin S.
This demonstration is useful for illustrations of reversible redox reactions and for relative reduction potentials.
Olson, Edwin S. J. Chem. Educ. 1977, 54, 366.
Oxidation / Reduction |
Dyes / Pigments
Conjugate acid-base and redox theory  Pacer, Richard A.
Consideration of relative oxidizing / reducing strength would be greatly facilitated if this topic were presented in terms of transfer of one or more electrons between members of a conjugate redox pair.
Pacer, Richard A. J. Chem. Educ. 1973, 50, 178.
Acids / Bases |
Oxidation / Reduction
Dissolved oxygen. A relevant experiment for the introductory laboratory  Stagg, William R.
Students measure the dissolved oxygen content of water from several natural sources as well as the change in solubility with temperature.
Stagg, William R. J. Chem. Educ. 1972, 49, 427.
Water / Water Chemistry |
Oxidation / Reduction |
Quantitative Analysis |
Solutions / Solvents |
Precipitation / Solubility |
Gases
The standard electrode potential of the silver-silver bromide electrode  Venable, R. L.; Roach, D. V.
Calculations of the standard electrode potential of the silver-silver bromide electrode indicate that many values listed in textbooks are incorrect.
Venable, R. L.; Roach, D. V. J. Chem. Educ. 1969, 46, 741.
Electrochemistry |
Aqueous Solution Chemistry |
Quantitative Analysis
Oxidation of copper by hydrochloric acid  Walker, Noojin; George, Donald L.
Demonstrates the oxidation of copper by hydrochloric acid.
Walker, Noojin; George, Donald L. J. Chem. Educ. 1968, 45, A429.
Oxidation / Reduction |
Acids / Bases |
Electrochemistry
Spontaneous combustion  Geoghegan, John T.; Sheers, Edward H.
Linseed oil is observed to char cotton over a period of time.
Geoghegan, John T.; Sheers, Edward H. J. Chem. Educ. 1968, 45, A429.
Oxidation / Reduction |
Reactions |
Calorimetry / Thermochemistry
Biological oxidations and energy conservation  Kirschbaum, Joel
Examines the oxidative steps leading to the synthesis of ATP in living organisms and their metabolic control.
Kirschbaum, Joel J. Chem. Educ. 1968, 45, 28.
Bioenergetics |
Oxidation / Reduction |
Thermodynamics |
Metabolism
Metallic reduction of aqueous hydrogen chloride  Walker, Noojin, Jr.
Calcium reacts with HCl to liberate hydrogen gas.
Walker, Noojin, Jr. J. Chem. Educ. 1964, 41, A477.
Reactions |
Oxidation / Reduction |
Metals |
Electrochemistry
The chemistry of silver. A demonstration sequence  Schwenck, J. Rae
Presents a series of reactions in which silver is transformed from its elemental form into several different compounds and then returned to its elemental form.
Schwenck, J. Rae J. Chem. Educ. 1959, 36, 45.
Aqueous Solution Chemistry |
Oxidation / Reduction
Recent developments concerning the signs of electrode potentials  Licht, Truman S.; deBethune, Andre J.
It is the purpose of this paper to review recent developments concerning the signs of electrode potentials, particularly with respect to single electrode potential, half-reaction potential, and half-cell electromotive force.
Licht, Truman S.; deBethune, Andre J. J. Chem. Educ. 1957, 34, 433.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemistry in the freshman course  Meldrum, William B.
This paper emphasizes the importance of electrochemical concepts in the freshman chemistry course.
Meldrum, William B. J. Chem. Educ. 1951, 28, 282.
Electrochemistry