TIGER

Journal Articles: 123 results
Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?  João C. M. Paiva, Jorge Gonçalves, and Susana Fonseca
This article examines three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?"
Paiva, João C. M.; Gonçalves, Jorge; Fonseca, Susana. J. Chem. Educ. 2008, 85, 1133.
Equilibrium |
Gases |
Thermodynamics
Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment  Kenneth V. Mills, Richard S. Herrick, Louise W. Guilmette, Lisa P. Nestor, Heather Shafer, and Mauri A. Ditzler,
Within the framework of a laboratory-focused, guided-inquiry pedagogy, students discover the Nernst equation, the spontaneity of galvanic cells, concentration cells, and the use of electrochemical data to calculate equilibrium constants.
Mills, Kenneth V.; Herrick, Richard S.; Guilmette, Louise W.; Nestor, Lisa P.; Shafer, Heather;Ditzler, Mauri A. J. Chem. Educ. 2008, 85, 1116.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
Using Pooled Data and Data Visualization To Introduce Statistical Concepts in the General Chemistry Laboratory   Robert J. Olsen
This article describes how data pooling and visualization can be employed in the first-semester general chemistry laboratory to introduce core statistical concepts such as central tendency and dispersion of a data set.
Olsen, Robert J. J. Chem. Educ. 2008, 85, 544.
Chemometrics |
Stoichiometry
Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory  Kristen L. Cacciatore, Jose Amado, Jason J. Evans, and Hannah Sevian
Presents a novel first-year chemistry experiment that asks students to replicate procedures described in sample lab reports that lack essential information. This structure is designed to promote students' experimental design and data analysis skills as well as their understanding of the importance and essential qualities of written and verbal communication between scientists.
Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah. J. Chem. Educ. 2008, 85, 251.
Equilibrium |
Green Chemistry |
Periodicity / Periodic Table |
Solutions / Solvents |
Stoichiometry |
Titration / Volumetric Analysis
A Simplified Model To Predict the Effect of Increasing Atmospheric CO2 on Carbonate Chemistry in the Ocean  Brian J. Bozlee, Maria Janebo, and Ginger Jahn
The chemistry of dissolved inorganic carbon in seawater is reviewed and used to predict the potential effect of rising levels of carbon dioxide in the atmosphere. It is found that calcium carbonate may become unsaturated in cold surface seawater by the year 2100, resulting in the destruction of calcifying organisms such as coral.
Bozlee, Brian J.; Janebo, Maria; Jahn, Ginger. J. Chem. Educ. 2008, 85, 213.
Applications of Chemistry |
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Equilibrium |
Green Chemistry |
Water / Water Chemistry
Using the Science Writing Heuristic To Improve Students' Understanding of General Equilibrium  James A. Rudd, II, Thomas J. Greenbowe, and Brian M. Hand
This study examines the performance of students using the Science Writing Heuristic approach, which facilitates scientific inquiry by structuring the laboratory notebook in a format that guides students to answer directed questions, on lecture exams and a laboratory practical exam on chemical equilibrium.
Rudd, James A., II; Greenbowe, Thomas J.; Hand, Brian M. J. Chem. Educ. 2007, 84, 2007.
Equilibrium |
Learning Theories |
TA Training / Orientation |
Student-Centered Learning
The Use of Limits in an Advanced Placement Chemistry Course  Paul S. Matsumoto, Jonathan Ring, and Jia Li (Lily) Zhu
This article describes the use of limits in topics usually covered in advanced placement or first-year college chemistry. This approach supplements the interpretation of the graph of an equation since it is usually easier to evaluate the limit of a function than to generate its graph.
Matsumoto, Paul S.; Ring, Jonathan; Zhu, Jia Li (Lily). J. Chem. Educ. 2007, 84, 1655.
Acids / Bases |
Equilibrium |
Gases |
Mathematics / Symbolic Mathematics |
Thermodynamics
The Physical Meaning of the Mathematical Formalism Present in Limiting Chemical Equations; Or, How Dilute Is Dilute?  C. Contreras-Ortega, N. Bustamante, J. L. Guevara, C. Portillo, and V. Kesternich
Proposes general mathematical formulations to offer students a better understanding of the real scope of scientific expressions dealing with limiting physical conditions, such as those concerning dilute and concentrated solutions and low and high temperatures and pressures.
Contreras-Ortega, C.; Bustamante, N.; Guevara, J. L.; Portillo, C.; Kesternich, V. J. Chem. Educ. 2007, 84, 788.
Aqueous Solution Chemistry |
Equilibrium |
Gases |
Mathematics / Symbolic Mathematics |
Quantitative Analysis |
Solutions / Solvents
Discovering the Thermodynamics of Simultaneous Equilibria. An Entropy Analysis Activity Involving Consecutive Equilibria  Thomas H. Bindel
This activity explores the thermodynamics of simultaneous, consecutive equilibria and is appropriate for second-year high school or AP chemistry. Students discover that a reactant-favored (entropy-diminishing) reaction can be caused to happen if it is coupled with a product-favored reaction of sufficient entropy production.
Bindel, Thomas H. J. Chem. Educ. 2007, 84, 449.
Acids / Bases |
Equilibrium |
Thermodynamics
Equilibrium Constants and Water Activity Revisited  David Keeports
Subtle arguments based upon the use of chemical potentials show that numerical values of solute molar concentrations can be used as good approximate activities in equilibrium calculations for reactions involving dilute solutions.
Keeports, David. J. Chem. Educ. 2006, 83, 1290.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Water / Water Chemistry |
Alcohols
Equilibrium Constants and Water Activity Revisited  E. J. Behrman
In teaching the effects of structure on acid strength, it is useful to compare, inter alia, water with primary alcohols.
Behrman, E. J. J. Chem. Educ. 2006, 83, 1290.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Water / Water Chemistry |
Alcohols
Equilibrium Constants and Water Activity Revisited  E. J. Behrman
In teaching the effects of structure on acid strength, it is useful to compare, inter alia, water with primary alcohols.
Behrman, E. J. J. Chem. Educ. 2006, 83, 1290.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Water / Water Chemistry |
Alcohols
Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction  Joel Tellinghuisen
The conditions under which chemical reactions occur determine which thermodynamic functions are minimized or maximized. This point is illustrated for the formation of ammonia in the ideal gas approximation using a numerical exercise.
Tellinghuisen, Joel. J. Chem. Educ. 2006, 83, 1090.
Gases |
Equilibrium |
Thermodynamics
(Strept)Avidin–Biotin: Two Interrelated Experiments for the Introductory Chemistry Laboratory  David E. Hansen, Dengda Tang, Jon A. Sanborn, and Mark D. Marshall
Describes a two-experiment sequence focusing on the noncovalent complex between the egg white protein avidin (or the similar protein streptavidin, which is expressed by the bacterium Streptomyces avidinii) and the essential cofactor biotin. The equilibrium constant for the binding of HABA to avidin is calculated from the data collected.
Hansen, David E.; Tang, Dengda; Sanborn, Jon A.; Marshall, Mark D. J. Chem. Educ. 2006, 83, 777.
Bioorganic Chemistry |
Computational Chemistry |
Equilibrium |
Titration / Volumetric Analysis
Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems  Robert M. Hanson and Bridget Michalek
Described here is a short, simple activity that can be used in any high school or college chemistry classroom or lab to explore the way energy is distributed in real chemical systems and as an entry into discussions of the probabilistic nature of entropy.
Hanson, Robert M.; Michalek, Bridget. J. Chem. Educ. 2006, 83, 581.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Modeling Dynamic Equilibrium with Coins  Martin Bartholow
Students explore the concept of equilibrium by moving small objects between two piles.
Bartholow, Martin. J. Chem. Educ. 2006, 83, 48A.
Computational Chemistry |
Equilibrium |
Rate Law
Equilibria That Shift Left upon Addition of More Reactant  Jeffrey E. Lacy
Most textbook presentations of Le Chtelier's principle in general and physical chemistry do not include a discussion of constant pressure conditions for which addition of a reactant can shift the equilibrium to the left. We propose presentations of isothermal, open systems at constant pressure for both levels of study by using concepts and skills that the respective students already possess. In addition, we derive novel criteria based on the stoichiometry of the reaction that can be used to identify those equilibria that will shift left upon addition of more reactant.
Lacy, Jeffrey E. J. Chem. Educ. 2005, 82, 1192.
Equilibrium |
Mathematics / Symbolic Mathematics |
Thermodynamics
Equilibrium Constants and Water Activity  David Keeports
General chemistry instructors are faced with a dilemma when introducing the topic of equilibrium constants: These constants are correctly written in terms of activities, yet activity is a complex topic better treated rigorously in a physical chemistry course than superficially in a general chemistry course. Thus, to introduce equilibrium calculations, it is necessary to use approximate forms for equilibrium constants. However, I find that some commonly used textbooks provide incorrect arguments leading to approximate equilibrium constants for aqueous reactions.
Keeports, David. J. Chem. Educ. 2005, 82, 999.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Water / Water Chemistry
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems  Paul S. Matsumoto
The traditional method to determine the equilibrium concentration of chemicals in a reaction, given the equilibrium constant and the initial concentration of chemicals in the reaction, involves the determination of the reaction quotient. This article will demonstrate that this step may be eliminated; thereby simplifying the algorithm to solve such problems. Such a reduction in the complexity of the algorithm may result in more students successfully being able to solve such problems.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 406.
Equilibrium |
Learning Theories |
Chemometrics
Unified Approximations: A New Approach for Monoprotic Weak Acid–Base Equilibria  Harry L. Pardue, Ihab N. Odeh, and Teweldemedhin M. Tesfai
This article describes a new approach to approximate calculations for monoprotic acidbase equilibria in otherwise pure water. The new approach, identified herein as unified approximations, uses a simple decision criterion to select between situations that should be treated as deprotonation and protonation reactions. The remaining treatment takes account of changes in concentrations of conjugate acidbase pairs for all situations and ignores autoprotolysis only for situations for which the analytical concentration of either the conjugate acid or conjugate base will always be larger than zero.
Pardue, Harry L.; Odeh, Ihab N.; Tesfai, Teweldemedhin M. J. Chem. Educ. 2004, 81, 1367.
Acids / Bases |
Equilibrium |
Chemometrics
Playing-Card Equilibrium  Robert M. Hanson
A simple hands-on simulation suitable for either classroom use or laboratory investigation involves using a standard deck of playing cards to explore the statistical aspects of equilibrium. Concepts that can be easily demonstrated include fluctuation around a most probable distribution, Le Chtelier's principle, the equilibrium constant, prediction of the equilibrium constant based on probability, and the effect of sample size on equilibrium fluctuations.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 1271.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Equilibrium  Matthew Sandberg and Michael K. Bellamy
Software (applet) to help students visualize what actually happens in an equilibrium system.
Sandberg, Matthew ; Bellamy, Michael K. J. Chem. Educ. 2003, 80, 456.
Equilibrium |
Molecular Modeling |
Molecular Mechanics / Dynamics
The Relative Acidities of Water and Methanol  Henry I. Abrash
Analysis of the disparity between the way the acidity constant of water is presented in general chemistry and organic chemistry textbooks.
Abrash, Henry I. J. Chem. Educ. 2001, 78, 1496.
Acids / Bases |
Equilibrium
Understanding Solubility through Excel Spreadsheets  Pamela Brown
This article describes assignments related to the solubility of inorganic salts that can be given in an introductory general chemistry course. These assignments address the need for math, graphing, and computer skills in the chemical technology program by developing skill in the use of Microsoft Excel to prepare spreadsheets and graphs and to perform linear and nonlinear curve-fitting.
Brown, Pamela. J. Chem. Educ. 2001, 78, 268.
Aqueous Solution Chemistry |
Chemometrics |
Precipitation / Solubility
The State of Division of Solids and Chemical Equilibria  João C. M. Paiva and Victor M. S. Gil
An experiment and a computer simulation are presented to address a counterintuitive situation often encountered when teaching chemical equilibria. This is prompted by the question "How can the subdivision of a solid reactant affect the reaction rate and not the composition of the equilibrium state?"
Paiva, João C. M.; Gil, Victor M. S. J. Chem. Educ. 2001, 78, 222.
Equilibrium |
Kinetics |
Laboratory Computing / Interfacing
SolEq: Solution Equilibria, Principles and Applications, Release 1
by SolEq Project Team: L. D. Pettit, K. J. Powell, and R. W. Ramette

  Marina C. Koether
29 tutorials with simulation, calculations, and graphs, on solution equilibria.
Koether, Marina C. J. Chem. Educ. 2000, 77, 1414.
Equilibrium |
Solutions / Solvents |
Titration / Volumetric Analysis

Equilibrium: A Teaching/Learning Activity: Author Reply  Audrey Wilson
Thanks for input.
Wilson, Audrey . J. Chem. Educ. 2000, 77, 1410.
Equilibrium
Equilibrium: A Teaching/Learning Activity  Todd P. Silverstein
Further refinement of equilibrium activity.
Silverstein, Todd P. J. Chem. Educ. 2000, 77, 1410.
Equilibrium
Are We Taking Symbolic Language for Granted?   Paul Marais and Faan Jordaan
This study formed part of a broader investigation into the role of language in teaching and learning chemical equilibrium. Students were tested for their understanding of 25 words and five symbols commonly used in connection with chemical equilibrium. This test showed that most of the students had an inadequate grasp of the meaning of all five symbols. It also showed that, on the average, their understanding of symbols was more problematic than their understanding of words.
Marais, Paul; Jordaan, Faan. J. Chem. Educ. 2000, 77, 1355.
Equilibrium |
Nomenclature / Units / Symbols
Graphing Calculator Strategies for Solving Chemical Equilibrium Problems (re J. Chem. Educ. 1999, 76, 632-634) Author Reply  Henry Donato Jr.
Reinforces appropriateness of application of graphing calculator for solving chemical equilibrium problems.
Donato, Henry, Jr. J. Chem. Educ. 2000, 77, 1120.
Aqueous Solution Chemistry |
Equilibrium
Graphing Calculator Strategies for Solving Chemical Equilibrium Problems (re J. Chem. Educ. 1999, 76, 632-634)  Todd P. Silverstein
Questions appropriateness of application of graphing calculator for solving chemical equilibrium problems.
Silverstein, Todd P. J. Chem. Educ. 2000, 77, 1120.
Aqueous Solution Chemistry |
Equilibrium
Determination of Ksp, ΔG0, ΔH0, and ΔS0 for the Dissolution of Calcium Hydroxide in Water: A General Chemistry Experiment  William B. Euler, Louis J. Kirschenbaum, and Ben Ruekberg
This exercise utilizes low-cost, relatively nonhazardous materials presenting few disposal problems. It reinforces the students' understanding of the interrelationship of solubility, Ksp, ΔG0, ΔH0, and ΔS0.
Euler, William B.; Kirschenbaum, Louis J.; Ruekberg, Ben. J. Chem. Educ. 2000, 77, 1039.
Equilibrium |
Thermodynamics |
Titration / Volumetric Analysis
Simulating Dynamic Equilibria: A Class Experiment  John A. Harrison and Paul D. Buckley
A first-order reversible reaction is simulated on an overhead projector using small coins or discs. Results illustrate how dynamic equilibria are established and allow the introduction of the concept of an equilibrium constant. Le Chtelier's principle is illustrated by further simulations.
Harrison, John A.; Buckley, Paul D. J. Chem. Educ. 2000, 77, 1013.
Equilibrium |
Rate Law |
Reactions
Simulations for Teaching Chemical Equilibrium  Penelope A. Huddle, Margaret Dawn White, and Fiona Rogers
This paper outlines a systematic approach to teaching chemical equilibrium using simulation experiments that address most known alternate conceptions in the topic. Graphs drawn using the data from the simulations are identical to those obtained using real experimental data for reactions that go to equilibrium. This allows easy mapping of the analogy to the target.
Huddle, Penelope Ann; White, Margaret Dawn; Rogers, Fiona. J. Chem. Educ. 2000, 77, 920.
Equilibrium |
Learning Theories
An Acid-Base Chemistry Example: Conversion of Nicotine  John H. Summerfield
The current government interest in nicotine conversion by cigarette companies provides an example of acid-base chemistry that can be explained to students in the second semester of general chemistry.
Summerfield, John H. J. Chem. Educ. 1999, 76, 1397.
Acids / Bases |
Drugs / Pharmaceuticals |
Equilibrium
Equilibrium: A Teaching/Learning Activity (author's reply)  Wilson, Audrey
Thanks for clarification and suggestions.
Wilson, Audrey J. Chem. Educ. 1999, 76, 900.
Equilibrium |
Rate Law
Equilibrium: A Teaching/Learning Activity  Sadavoy, Lyle; Paiva, Joao C. M.; Gil, Victor M. S.
Clarification and suggestions for improvement.
Sadavoy, Lyle; Paiva, Joao C. M.; Gil, Victor M. S. J. Chem. Educ. 1999, 76, 900.
Equilibrium |
Rate Law
The Arrhenius Equation Revisited (author's reply)  Carroll, Harvey F.
Misleading remarks regarding the Arrhenius equation in some general chemistry texts.
Carroll, Harvey F. J. Chem. Educ. 1999, 76, 899.
Equilibrium |
Rate Law
The Arrhenius Equation Revisited  Logan, S. R.
Addition citation on the implications of the Arrhenius equation.
Logan, S. R. J. Chem. Educ. 1999, 76, 899.
Equilibrium |
Rate Law
Discovering a Change in Equilibrium Constant with Change in Ionic Strength: An Empirical Laboratory Experiment for General Chemistry  Richard J. Stolzberg
Spectrophotometric measurements of absorbance of a solution of Fe3+(aq) and SCN-(aq) treated with different amounts of KNO3 are made to determine Kc for the formation of FeSCN2+(aq). Students observe a regular decrease in the value of Kc as the concentration of added KNO3 is increased.
Stolzberg, Richard J. J. Chem. Educ. 1999, 76, 640.
Equilibrium |
Aqueous Solution Chemistry
Graphing Calculator Strategies for Solving Chemical Equilibrium Problems  Henry Donato Jr.
A general method for finding the roots of polynomial equations using the ubiquitous and inexpensive graphing calculator is presented. It is suggested that important reactions, which are not discussed in introductory chemistry courses because of computational considerations, may now be discussed.
Donato, Henry, Jr. J. Chem. Educ. 1999, 76, 632.
Aqueous Solution Chemistry |
Learning Theories |
Equilibrium
The Complexity of Teaching and Learning Chemical Equilibrium  Louise Tyson, David F. Treagust, and Robert B. Bucat
This paper discusses three key issues relevant to secondary school chemistry teaching. They arise from a study of students' understanding of chemical equilibrium using qualitative and quantitative research methods.
Tyson, Louise; Treagust, David F.; Bucat, Robert B. J. Chem. Educ. 1999, 76, 554.
Equilibrium |
Learning Theories
Equilibrium Principles: A Game for Students  Lionel J. Edmonson Jr. and Don L. Lewis
The laboratory exercise is a game using marked sugar cubes as dice. The game emphasizes the dynamic character of equilibrium. Forward and reverse rate-constant values are used to calculate an equilibrium constant and to predict equilibrium populations. Predicted equilibrium populations are compared with experimental results.
Edmonson, Lionel J., Jr.; Lewis, Don L. J. Chem. Educ. 1999, 76, 502.
Equilibrium |
Kinetics
A Simplified Method for Finding the pKa of an Acid-Base Indicator by Spectrophotometry  George S. Patterson
Experiments on determining the pKa of an acid-base indicator by visible spectroscopy are often found in analytical and physical chemistry lab texts. The procedure described here is a modification suitable for general chemistry lab students.
Patterson, George S. J. Chem. Educ. 1999, 76, 395.
Acids / Bases |
Equilibrium |
UV-Vis Spectroscopy
The Fizz Keeper, a Case Study in Chemical Education, Equilibrium, and Kinetics  Reed Howald
The chemistry of the loss of carbonation from carbonated beverages on storage is considered. Increasing the pressure of CO2(g) will restore carbonation, but an increase in pressure adding air should not affect the equilibria. It can and does, however, affect the kinetics-the rate at which a new equilibrium is established. Thus the Fizz Keeper is effective for storage of resealed pop containers for hours, but not for periods of weeks or months.
Howald, Reed. J. Chem. Educ. 1999, 76, 208.
Transport Properties |
Equilibrium |
Gases |
Kinetics |
Aqueous Solution Chemistry |
Consumer Chemistry |
Applications of Chemistry
Equilibrium: A Teaching/Learning Activity  Audrey H. Wilson
This article describes hands-on activities for high-school or undergraduate students designed to clarify important concepts involved in early studies of equilibrium. Concepts included are that at equilibrium, rate of forward reaction = rate of backward reaction; concentrations of both reactants and products remain constant; the equilibrium constant is constant at the same temperature but changes as the temperature changes; and equilibrium may be approached from different starting points.
Wilson, Audrey H. J. Chem. Educ. 1998, 75, 1176.
Equilibrium
"Conceptual Questions" on LeChatelier's Principle  Benjamin P. Huddle
Three "conceptual questions" presented are designed to assess the student's ability to conceptualize chemical equilibrium and to predict the effect of changes made to a system at equilibrium, using LeChatelier's principle, without doing any equilibrium constant calculations.
Huddle, Benjamin P. J. Chem. Educ. 1998, 75, 1175.
Equilibrium
Formation and Dimerization of NO2 A General Chemistry Experiment  April D. Hennis, C. Scott Highberger, and Serge Schreiner*
A general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment readily provides students with data that can be manipulated with a common spreadsheet.
Hennis, April D.; Highberger, C. Scott; Schreiner, Serge. J. Chem. Educ. 1997, 74, 1340.
Gases |
Equilibrium |
Quantitative Analysis |
Stoichiometry
Why and How To Teach Acid-Base Reactions without Equilibrium  Terry S. Carlton
A stepwise method enables students to predict which acid-base reactions occur when two solutions are mixed. The complexities of equilibrium are avoided by treating reactions as all-or-none and by providing a table of acids in order of strength.
Carlton, Terry S. J. Chem. Educ. 1997, 74, 939.
Learning Theories |
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium
Ionization or Dissociation?  Emeric Schultz
The use of the terms Dissociation and Ionization in the teaching of chemistry is discussed. It is suggested that the term dissociation, and what it suggests in terms of ordinary language, is inappropriate when used in certain contexts. Since an alternate and more physically correct term, specifically ionization, is available for these contexts, it is argued that this term be used consistently in these contexts.
Schultz, Emeric. J. Chem. Educ. 1997, 74, 868.
Equilibrium |
Nomenclature / Units / Symbols
Thermodynamics and Spontaneity  Raymond S. Ochs
Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject.
Ochs, Raymond S. J. Chem. Educ. 1996, 73, 952.
Thermodynamics |
Learning Theories |
Equilibrium
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
REACT: Exploring Practical Thermodynamic and Equilibrium Calculations  Ramette, Richard W.
Description of REACT software to balance complicated equations; determine thermodynamic data for all reactants and products; calculate changes in free energy, enthalpy, and entropy for a reaction; and find equilibrium conditions for the a reaction.
Ramette, Richard W. J. Chem. Educ. 1995, 72, 240.
Stoichiometry |
Equilibrium |
Thermodynamics |
Chemometrics
Chemical Equilibrium in the General Chemistry Course  Fainzilberg, Vladimir E.; Karp, Stewart
The first chapters on chemical equilibrium in first-year college chemistry texts make an "error" in the solution of certain types of equilibria problems.
Fainzilberg, Vladimir E.; Karp, Stewart J. Chem. Educ. 1994, 71, 769.
Equilibrium |
Kinetics
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
Equilibrium Calculator  Allendoerfer, Robert
The equilibrium calculator can calculate the equilibrium concentrations of all reagents in an arbitrary chemical reaction with as many as five reactants and products.
Allendoerfer, Robert J. Chem. Educ. 1993, 70, 126.
Equilibrium |
Chemometrics
Monitoring self-association of a hydrophobic peptide with high performance liquid chromatography: An undergraduate kinetic experiment using the antibiotic gramicidin A  Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin
The authors propose a kinetic experiment that uses high performance liquid chromatography to determine the rate and equilibrium constants in a very simple manner, and separate the molecular species under study.
Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin J. Chem. Educ. 1992, 69, A113.
HPLC |
Kinetics |
Proteins / Peptides |
Rate Law |
Equilibrium
The acid equilibrium constant is unity! (the author replies)  Thompson, Ralph J.
The interpretation of thermodynamic equilibrium constants by Baldwin and Burchill is quite proper and technically correct.
Thompson, Ralph J. J. Chem. Educ. 1992, 69, 515.
Acids / Bases |
Equilibrium |
Aqueous Solution Chemistry
The acid equilibrium constant is unity!  Baldwin, W. G.; Burchill, C. E.
The attempt to assign a non-unity value to this equilibrium constant is a consequence of misunderstanding the way in which the (nearly) constant concentration or activity of the solvent in a dilute solution (or of a pure solid or liquid in a heterogeneous system) is treated when formulating the conventional equilibrium constant expression.
Baldwin, W. G.; Burchill, C. E. J. Chem. Educ. 1992, 69, 514.
Acids / Bases |
Equilibrium |
Aqueous Solution Chemistry
Standard states for water equilibrium.  Baldwin, W. George; Burchill, C. Eugene.
The authors consider that Ka and Kb values for Bronsted acids and bases in aqueous solution represent one data set describing the properties of solutes in dilute aqueous solution.
Baldwin, W. George; Burchill, C. Eugene. J. Chem. Educ. 1992, 69, 255.
Water / Water Chemistry |
Equilibrium |
Brønsted-Lowry Acids / Bases
Advanced titration plots using spreadsheet scripting  Currie, James O., Jr.; Whiteley, Richard V., Jr.
131. A spreadsheet aids in student understanding of acid/base titration calculations.
Currie, James O., Jr.; Whiteley, Richard V., Jr. J. Chem. Educ. 1991, 68, 923.
Acids / Bases |
Titration / Volumetric Analysis |
pH |
Laboratory Computing / Interfacing |
Equilibrium
Chemical equilibrium: III. A few math tricks   Gordus, Adon A.
The third article in a series on chemical equilibrium that considers a few math "tricks" useful in equilibrium calculations and approximations.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 291.
Acids / Bases |
Equilibrium |
Chemometrics |
Titration / Volumetric Analysis
Chemical equilibrium: II. Deriving an exact equilibrium equation   Gordus, Adon A.
In this article appearing in a series on chemical equilibrium, authors consider how to derive a completely general equation for any chemical mixture.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 215.
Equilibrium |
Chemometrics
Chemical equilibrium: I. The thermodynamic equilibrium constant  Gordus, Adon A.
This is the first article in a series of eight that investigates the various assumptions that result in the simplified equilibrium equations found in most introductory texts. In this first article, the author considers the general nature of the constant K, Le Chatelier's principle, and the effect of the temperature on K.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 138.
Thermodynamics |
Equilibrium
Measurements of equilibrium constants of acid-base indicators with a blocktronic colorimeter  Walters, David; Birk, James P.
A computer-interfaced measurement of equilibrium constants of acid-base indicators (methyl orange, methyl red, and phenolphthalein).
Walters, David; Birk, James P. J. Chem. Educ. 1990, 67, A252.
Acids / Bases |
Dyes / Pigments |
Spectroscopy |
Equilibrium |
Laboratory Computing / Interfacing
Calculation of equilibrium constant in esterification reactions  Sarlo, Edward; Svoronos, Paris; Kulas, Patricia
Procedure for measuring the equilibrium constant in esterification reactions.
Sarlo, Edward; Svoronos, Paris; Kulas, Patricia J. Chem. Educ. 1990, 67, 796.
Esters |
Alcohols |
Carboxylic Acids |
Equilibrium
Solving quadratic equations  Brown, R. J. C.
A better technique than the quadratic equation for chemical equilibria is offered here.
Brown, R. J. C. J. Chem. Educ. 1990, 67, 409.
Chemometrics |
Equilibrium
Solution of acid-base equilibria by successive approximations  Olivieri, Alejandro C.
The use of the method of successive approximations for solving acid-base equilibria, in conjunction with an intuitive, chemically based analysis is presented.
Olivieri, Alejandro C. J. Chem. Educ. 1990, 67, 229.
Acids / Bases |
Equilibrium
An efficient method for the treatment of weak acid/base equilibria  Burness, James H.
The use of the ionization ratio concept enables students to perform many of the calculations for aqueous acid/base equilibria more quickly and efficiently.
Burness, James H. J. Chem. Educ. 1990, 67, 224.
Equilibrium |
Acids / Bases
The extent of acid-base reactions  Thompson, Ralph J.
How to calculate the equilibrium constant of an acid-base reaction.
Thompson, Ralph J. J. Chem. Educ. 1990, 67, 220.
Acids / Bases |
Reactions |
Equilibrium
Solving equilibrium constant expressions using spreadsheets  Metz, Clyde; Donato, Henry, Jr.
Description and application of solving equilibrium constant expressions using spreadsheets.
Metz, Clyde; Donato, Henry, Jr. J. Chem. Educ. 1989, 66, A241.
Equilibrium
Computer simulation of chemical equilibrium  Cullen, John F., Jr.
108. The "Great Chemical Bead Game" requires no instruments and presents the concepts of equilibrium and kinetics more clearly than an experiment. [October and November Computer Series both inadvertently called number 107. Numbering restored by skipping 109 and calling January 1990 number 110.]
Cullen, John F., Jr. J. Chem. Educ. 1989, 66, 1023.
Equilibrium |
Kinetics |
Rate Law
Solution equilibrium problems(Moss, David B.)  Cass, Don; Murray, Marilee
Two reviews of a two disk set with a 44-page manual that discusses equilibria in general and specific techniques of solving equilibrium problems.
Cass, Don; Murray, Marilee J. Chem. Educ. 1988, 65, A114.
Equilibrium
The perils of carbonic acid and equilibrium constants  Jencks, William P.; Altura, Rachel A.
It is important to remember that the small amounts of carbon dioxide that are usually present in water can have large effects on acid-base equilibria of dilute solutions and that dilute solutions of most weak acids and bases undergo significant protonation or hydrolysis when they are dissolved in water.
Jencks, William P.; Altura, Rachel A. J. Chem. Educ. 1988, 65, 770.
Acids / Bases |
Equilibrium |
Aqueous Solution Chemistry
Tools of the trade   Bruno, Michael J.
High school teachers can never have too many visual aids when teaching chemistry. This author shares some demonstrations in equilibrium that often produce "oohs" and "aaaahs" from his students.
Bruno, Michael J. J. Chem. Educ. 1988, 65, 698.
Equilibrium |
pH
Correct equilibrium constants for water  Baldwin, W. George; Burchill, C. Eugene
Disagreement with the numerical values assigned to equilibrium constants.
Baldwin, W. George; Burchill, C. Eugene J. Chem. Educ. 1987, 64, 1067.
Equilibrium |
Water / Water Chemistry |
Acids / Bases |
Aqueous Solution Chemistry
Thermodynamics of the rhodamine B lactone zwitterion equilibrium: An undergraduate laboratory experiment  Hinckley, Daniel A.; Seybold, Paul G.
An experiment to derive thermodynamic values from a thermochromic equilibrium that uses a commercially available dye, attains equilibrium rapidly, and employs a simple, single-beam spectrophotometer.
Hinckley, Daniel A.; Seybold, Paul G. J. Chem. Educ. 1987, 64, 362.
Thermodynamics |
Dyes / Pigments |
Spectroscopy |
Equilibrium
VisiChem  Breneman, G. L.
70. Bits and pieces, 28. Many of the business spreadsheet programs can be used to answer "What if?" questions in chemistry due to the mathematical functions needed for science (such as logs, trig functions, square root) and others.
Breneman, G. L. J. Chem. Educ. 1986, 63, 321.
Noncovalent Interactions |
Equilibrium
Mathematics in the chemistry classroom. Part 2. Elementary entities play their part  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
One of the problems that learners have to overcome when doing stoichiometry calculations is to learn how statements about elementary entities given by formulas and equations are related to statements about portions of substances as measured in the macroscopic world.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 1021.
Chemometrics |
Stoichiometry
Le Châtelier's Principle  Knox, Kerro
Question involving effect of increasing the pressure on the N2 + 3H2 <=> 2NH3 system.
Knox, Kerro J. Chem. Educ. 1985, 62, 863.
Equilibrium |
Gases
Solubility and Ksp of calcium sulfate: a general chemistry laboratory experiment  Sawyer, Albert K.
The experiment shared in this note can be used to accompany lectures on solubility or chemical equilibrium.
Sawyer, Albert K. J. Chem. Educ. 1983, 60, 416.
Solutions / Solvents |
Aqueous Solution Chemistry |
Equilibrium
Le Châtelier's principle: the effect of temperature on the solubility of solids in liquids  Brice, L. K.
The purpose of this article is to provide a rigorous but straightforward thermodynamic treatment of the temperature dependence of solubility of solids in liquids that is suitable for presentation at the undergraduate level. The present discussion may suggest how to approach the qualitative aspects of the subject for freshman.
Brice, L. K. J. Chem. Educ. 1983, 60, 387.
Thermodynamics |
Liquids |
Solids |
Chemometrics |
Equilibrium
Teaching and learning problem solving in science. Part I: A general strategy  Mettes, C. T. C. W.; Pilot, A.; Roossink, H. J.; Kramers-Pals, H.
A systematic approach to solving problems and on designing instruction where students learn this approach.
Mettes, C. T. C. W.; Pilot, A.; Roossink, H. J.; Kramers-Pals, H. J. Chem. Educ. 1980, 57, 882.
Chemometrics
Chemical equilibrium  Mickey, Charles D.
The law of mass action, the equilibrium constant, and the effect of temperature, concentration, and pressure on equilibrium.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 801.
Equilibrium |
Catalysis
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Le Châtelier's principle: A reexamination and method of graphic illustration  Treptow, Richard S.
Le Châtelier's development of the principle that bears his name, and a rephrasing of that principle to make it technically and historically accurate.
Treptow, Richard S. J. Chem. Educ. 1980, 57, 417.
Equilibrium
On the misuse of Le Châtelier's principle for the prediction of the temperature dependence of the solubility of salts  Bodner, George M.
Explores why Le Châtelier's principle often fails to predict the temperature dependence of the solubility of salts.
Bodner, George M. J. Chem. Educ. 1980, 57, 117.
Equilibrium |
Precipitation / Solubility |
Solutions / Solvents |
Aqueous Solution Chemistry
Strong and weak acids and bases  Deck, Joseph C.
The designations "strong" and "weak" are used in various ways, and often with respect to the same compound in different situations.
Deck, Joseph C. J. Chem. Educ. 1979, 56, 814.
Acids / Bases |
Equilibrium |
Aqueous Solution Chemistry
The temperature dependence of the equilibrium constant  Burness, James H.
This exam question tests a student's ability to derive the temperature dependence of an equilibrium constant not by qualitatively applying Le Chatelier's principle, but by understanding the relationship between the kinetics of the equation and the value of Keq.
Burness, James H. J. Chem. Educ. 1979, 56, 395.
Equilibrium |
Kinetics
An apparent contradiction in the application of the principle of Le Chtelier  Mellon, E. K.
Unless some care is exercised, the application of free energy concepts in situations where marked temperature changes occur can lead to apparent contradictions like the one described in this paper.
Mellon, E. K. J. Chem. Educ. 1979, 56, 380.
Equilibrium |
Thermodynamics
Determination of the equilibrium constant for triiodide formation. Use of a less toxic solvent  Ackermann, Martin N.
A typical equilibrium laboratory may be hazardous for inexperienced students to perform.
Ackermann, Martin N. J. Chem. Educ. 1978, 55, 795.
Equilibrium
Intuitive and general approach to acid-base equilibrium calculations  Felty, Wayne L.
The purpose of this paper is to show that the usual intuitive approach used in general chemistry can be readily extended without introduction of additional, sophisticated concepts to give the general, exact expression and to point out the pedagogical advantage of its use.
Felty, Wayne L. J. Chem. Educ. 1978, 55, 576.
Acids / Bases |
Equilibrium |
Chemometrics
Programmable pocket electronic calculators in the classroom  Weldert, Robert W.
Using programmable calculators in grading and a lab activity involving equilibrium.
Weldert, Robert W. J. Chem. Educ. 1977, 54, 628.
Equilibrium
Water dipping kinetics. A physical analog for chemical kinetics  Birk, James P.; Gunter, S. Kay
Physical analogs of zero-, first, and second-order kinetics using the volume of water transferred by a dipper oriented in different directions with respect to a basin of water.
Birk, James P.; Gunter, S. Kay J. Chem. Educ. 1977, 54, 557.
Kinetics |
Equilibrium |
Rate Law
The effects of HCl and aspirin on the stomach: An equilibrium review  DeLorenzo, Ronald
The chemical effect and medical implications of taking aspirin.
DeLorenzo, Ronald J. Chem. Educ. 1977, 54, 306.
Equilibrium |
Acids / Bases |
pH |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Applications of Chemistry
On mole fractions in equilibrium constants  Delaney, C. M.; Nash, Leonard K.
Proposes a hybrid equilibrium constant for use in introductory chemistry courses.
Delaney, C. M.; Nash, Leonard K. J. Chem. Educ. 1977, 54, 151.
Equilibrium |
Stoichiometry |
Aqueous Solution Chemistry |
Solutions / Solvents
A computer program to support equilibrium constant theory  Thielmann, Vernon
A Fortran IV program calculates ten different K values based on different equilibrium expressions that are chosen at random.
Thielmann, Vernon J. Chem. Educ. 1975, 52, 468.
Equilibrium
Molar solubility calculations and the control equilibrium  Chaston, S. H. H.
The Control-Equilibrium method uses as its starting point a precise procedure for obtaining the equilibrium that accounts for the bulk of the decomposition of starting materials.
Chaston, S. H. H. J. Chem. Educ. 1975, 52, 206.
Solutions / Solvents |
Chemometrics |
Equilibrium
A dynamic lecture demonstration of dynamic equilibrium - The BG system  Battino, Rubin
This demonstration uses students as atoms and molecules.
Battino, Rubin J. Chem. Educ. 1975, 52, 55.
Equilibrium
Lecture experiment: A quantitative illustration of LeChatelier's principle  Nelson, D. L.; Ginns, E. I.; Richtol, H. H.; Reeves, R. R.
A short experiment involving the popular gaseous nitrogen dioxide system has been developed into a lecture demonstration which quantitatively illustrates the behavior of a homogeneous gas-phase equilibrium under conditions of varying temperature and pressure.
Nelson, D. L.; Ginns, E. I.; Richtol, H. H.; Reeves, R. R. J. Chem. Educ. 1973, 50, 721.
Equilibrium |
Gases
Significant digits in logarithm-antilogarithm interconversions  Jones, Donald E.
Most textbooks are in error in the proper use of significant digits when interconverting logarithms and antilogarithms.
Jones, Donald E. J. Chem. Educ. 1972, 49, 753.
Nomenclature / Units / Symbols |
Chemometrics
Passage of fruit flies through a hole. A model for a reversible chemical reaction  Runquist, Elizabeth A.; Runquist, Olaf
The passage of fruit flies through a single orifice provides an excellent model for illustrating the principles of equilibrium and chemical dynamics; the results are found to be temperature dependent and reproducible.
Runquist, Elizabeth A.; Runquist, Olaf J. Chem. Educ. 1972, 49, 534.
Reactions |
Equilibrium |
Kinetics |
Rate Law
The design and use of an equilibrium machine  Alden, Robert T.; Schmuckler, Joseph S.
An operating model that can be used to determine quantitatively equilibrium shifts when demonstrating Le Chatelier's Principle and relates to molecular level considerations and the probabilistic nature of equilibrium.
Alden, Robert T.; Schmuckler, Joseph S. J. Chem. Educ. 1972, 49, 509.
Equilibrium
Gas Laws, Equilibrium, and the Commercial Synthesis of Nitric acid. A Simple Demonstration  Alexander, M. Dale
This demonstration of the commercial production of nitric acid uses a simple apparatus to illustrate a number of basic chemical concepts, including Le Chatelier's principle.
Alexander, M. Dale J. Chem. Educ. 1971, 48, 838.
Synthesis |
Industrial Chemistry |
Acids / Bases |
Gases |
Equilibrium |
Reactions |
Stoichiometry
A unified introductory chemistry laboratory  Splittgerber, A. G.; MacLean, D. B.; Neils, J.
Common criticisms against chemistry learning laboratories accuse typical first year laboratories of painting an inaccurate portrait of the nature of the chemistry research experience. The author propose a project-type unified laboratory program.
Splittgerber, A. G.; MacLean, D. B.; Neils, J. J. Chem. Educ. 1971, 48, 330.
Undergraduate Research |
Synthesis |
Separation Science |
Equilibrium |
Qualitative Analysis
Demonstrating the relation between rate constants and the equilibrium constant  Meyer, Edwin F.; Glass, Edward
Presents an approach used with an apparatus to demonstrate quantitatively the relationship between rate constants and the equilibrium constant for simple reversible reactions.
Meyer, Edwin F.; Glass, Edward J. Chem. Educ. 1970, 47, 646.
Rate Law |
Equilibrium |
Reactions
Component concentrations in solutions of weak acids  Goldish, Dorothy M.
presents a new approach to teaching the subject of weak acid equilibria and its associated calculations.
Goldish, Dorothy M. J. Chem. Educ. 1970, 47, 65.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Chemometrics |
pH
The law of mass action  Berline, Steven; Bricker, Clark
It is the purpose of this paper to present a derivation of the Law of Mass Action that should have meaning and could be used at an elementary level.
Berline, Steven; Bricker, Clark J. Chem. Educ. 1969, 46, 499.
Equilibrium |
Rate Law |
Kinetics
Rapid graphical method for determining formation constants  Christian, Sherril D.
This paper presents a rapid graphical method for determining formation constants and absorptivities of 1:1 complexes in dilute solution.
Christian, Sherril D. J. Chem. Educ. 1968, 45, 713.
Equilibrium
Principles of chemical equilibrium (Morris, Kelso B.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1966, 43, 110.
Equilibrium |
Enrichment / Review Materials
Solvent effect on the keto-enol equilibrium of acetoacetic ester  Lockwood, Karl L.
The purpose of the investigation is to introduce students to some of the factors that influence an equilibrium constant.
Lockwood, Karl L. J. Chem. Educ. 1965, 42, 481.
Solutions / Solvents |
Equilibrium
KineticsEarly and often  Campbell, J. A.
Describes an approach to investigating kinetics and its application to the "blue bottle" experiment.
Campbell, J. A. J. Chem. Educ. 1963, 40, 578.
Kinetics |
Equilibrium |
Mechanisms of Reactions
Heterogeneous equilibria in general chemistry  Grotz, Leonard C.
Presents suggestions for approaching the subject of heterogeneous equilibria in general chemistry.
Grotz, Leonard C. J. Chem. Educ. 1963, 40, 479.
Equilibrium |
Kinetics
Temperature dependence of equilibrium: A first experiment in general chemistry  Mahan, Bruce H.
This experiment uses cooling curves to derive the expression for the temperature dependence of the equilibrium constant.
Mahan, Bruce H. J. Chem. Educ. 1963, 40, 293.
Equilibrium |
Thermodynamics
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
Chemical equilibrium: The hydrogenation of benzene  Kokes, R. J.; Dorfman, M. K.; Mathia, T.
This procedure examines the reversible reaction between benzene and hydrogen, forming cyclohexane, in the presence of a metal catalyst.
Kokes, R. J.; Dorfman, M. K.; Mathia, T. J. Chem. Educ. 1962, 39, 91.
Reactions |
Aromatic Compounds |
Equilibrium |
Catalysis
Calculating molar solubilities from equilibrium constants  Butler, James N.
Presents several examples of calculating molar solubilities from equilibrium constants.
Butler, James N. J. Chem. Educ. 1961, 38, 460.
Chemical Technicians |
Equilibrium |
Stoichiometry |
Qualitative Analysis |
Aqueous Solution Chemistry
Potentiometric measurements of equilibria: In general chemistry laboratory  Chesick, J. P.; Patterson, Andrew, Jr.
The authors describe an experiment in which the solubility product of silver chloride, the ionization constant of the silver-ammonia complex, and the ionization constant of acetic acid can be determined with one afternoon of work.
Chesick, J. P.; Patterson, Andrew, Jr. J. Chem. Educ. 1959, 36, 496.
Electrochemistry |
Equilibrium |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Acids / Bases
Initial ratio of reactants to give, at equilibrium, a maximum yield of products  Haslam, E.
Derivation of the initial ratio of reactants to give, at equilibrium, a maximum yield of products.
Haslam, E. J. Chem. Educ. 1958, 35, 471.
Stoichiometry |
Chemometrics
Textbook errors: Guest column. XVI: The vapor pressure of hydrated cupric sulfate  Logan, Thomas S.
Examines variability in the values of pressures of water vapor in equilibrium with pairs of cupric sulfate in hydrates quoted in the literature and texts.
Logan, Thomas S. J. Chem. Educ. 1958, 35, 148.
Phases / Phase Transitions / Diagrams |
Equilibrium
Le Châtelier's principle and the equilibrium constant  Miller, Arild J.
Many students of chemistry have difficulty in understanding how the position of equilibrium in a gaseous reaction can change when the pressure is altered, in accordance with Le Châtelier's principle, without causing a corresponding variation in the equilibrium constant.
Miller, Arild J. J. Chem. Educ. 1954, 31, 455.
Equilibrium |
Reactions |
Gases
Praseodymium tetrafluoride  Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R.
In spite of the experimental failures to prepare praseodymium tetrafluoride, there is strong evidence for its possible formation to be found by calculating the equilibrium constants for some of the reactions by which this compound might be prepared.
Perros, Theodore P.; Munson, Thomas R.; Naeser, Charles R. J. Chem. Educ. 1953, 30, 402.
Oxidation State |
Equilibrium |
Thermodynamics
A procedure for solving equilibrium problems  Boyd, Robert Neilson
A procedure for solving equilibrium problems is illustrated through several sample problems.
Boyd, Robert Neilson J. Chem. Educ. 1952, 29, 198.
Equilibrium |
Chemometrics |
Aqueous Solution Chemistry