TIGER

Journal Articles: 62 results
Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties  Robert M. Hanson, Patrick Riley, Jeff Schwinefus, and Paul J. Fischer
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level.
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J. J. Chem. Educ. 2008, 85, 1142.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics
The Use of Limits in an Advanced Placement Chemistry Course  Paul S. Matsumoto, Jonathan Ring, and Jia Li (Lily) Zhu
This article describes the use of limits in topics usually covered in advanced placement or first-year college chemistry. This approach supplements the interpretation of the graph of an equation since it is usually easier to evaluate the limit of a function than to generate its graph.
Matsumoto, Paul S.; Ring, Jonathan; Zhu, Jia Li (Lily). J. Chem. Educ. 2007, 84, 1655.
Acids / Bases |
Equilibrium |
Gases |
Mathematics / Symbolic Mathematics |
Thermodynamics
Configurational Entropy Revisited  Frank L. Lambert
Positional entropy should be eliminated from general chemistry instruction and replaced by emphasis on the motional energy of molecules as enabling entropy change.
Lambert, Frank L. J. Chem. Educ. 2007, 84, 1548.
Statistical Mechanics |
Thermodynamics
Mass-Elastic Band Thermodynamics: A Visual Teaching Aid at the Introductory Level  William C. Galley
Demonstrations of five spontaneous isothermal processes involving the coupling of a mass and elastic band and arising from combinations of enthalpy and entropy changes are presented and then dissected. Analogies are drawn between these processes and common spontaneous molecular events such as chemical reactions and phase transitions.
Galley, William C. J. Chem. Educ. 2007, 84, 1147.
Calorimetry / Thermochemistry |
Thermodynamics
"Mysteries" of the First and Second Laws of Thermodynamics  Rubin Battino
Over the years the subject of thermodynamics has taken on an aura of difficulty, subtlety, and mystery. This article discusses common misconceptions and how to introduce the topic to students.
Battino, Rubin. J. Chem. Educ. 2007, 84, 753.
Calorimetry / Thermochemistry |
Thermodynamics
Equilibria That Shift Left upon Addition of More Reactant  Jeffrey E. Lacy
Most textbook presentations of Le Chtelier's principle in general and physical chemistry do not include a discussion of constant pressure conditions for which addition of a reactant can shift the equilibrium to the left. We propose presentations of isothermal, open systems at constant pressure for both levels of study by using concepts and skills that the respective students already possess. In addition, we derive novel criteria based on the stoichiometry of the reaction that can be used to identify those equilibria that will shift left upon addition of more reactant.
Lacy, Jeffrey E. J. Chem. Educ. 2005, 82, 1192.
Equilibrium |
Mathematics / Symbolic Mathematics |
Thermodynamics
Microscopic Description of Le Châtelier's Principle  Igor Novak
The analysis based on microscopic descriptors (energy levels and their populations) is given that provides visualization of free energies and conceptual rationalization of Le Châtelier's principle. The misconception "nature favors equilibrium" is highlighted.
Novak, Igor. J. Chem. Educ. 2005, 82, 1190.
Equilibrium |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
The q/T Paradox: Which "Contains More Heat", a Cup of Coffee at 95°C or a Liter of Icewater?  Ed Vitz and Michael J. Schuman
In this demonstration, heat is removed from 10 cm3 of water at ~95C and 42 cm3 of water at ~0C by adding each to a measured sample of liquid nitrogen. The heat removed from the water boils the N2(l), and the quantity of liquid nitrogen that is evaporated by boiling is determined. The quantity of heat that was absorbed is calculated from the heat of vaporization of liquid nitrogen and found to be about 10,000 J in the case of the hot water and 25,000 J in the case of the icewater.
Vitz, Ed; Schuman, Michael J. J. Chem. Educ. 2005, 82, 856.
Calorimetry / Thermochemistry |
Heat Capacity |
Phases / Phase Transitions / Diagrams |
Thermodynamics
Let's Drive "Driving Force" Out of Chemistry  Norman C. Craig
"Driving force" is identified as a misleading concept in analyzing spontaneous change. Driving force wrongly suggests that Newtonian mechanics and determinism control and explain spontaneous processes. The usefulness of the competition of ?H versus ?S in discussing chemical change is also questioned. Entropy analyseswhich consider the contributions to the total change in entropyare advocated.
Craig, Norman C. J. Chem. Educ. 2005, 82, 827.
Natural Products |
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Teaching Entropy Analysis in the First-Year High School Course and Beyond  Thomas H. Bindel
A 16-day teaching unit is presented that develops chemical thermodynamics at the introductory high school level and beyond from exclusively an entropy viewpoint referred to as entropy analysis. Many concepts are presented, such as: entropy, spontaneity, the second law of thermodynamics, qualitative and quantitative entropy analysis, extent of reaction, thermodynamic equilibrium, coupled equilibria, and Gibbs free energy. Entropy is presented in a nontraditional way, using energy dispersal.
Bindel, Thomas H. J. Chem. Educ. 2004, 81, 1585.
Thermodynamics
Using Science Fiction To Teach Thermodynamics: Vonnegut, Ice-nine, and Global Warming  Charles A. Liberko
When covering the topic of thermodynamics at the introductory level, an example from Kurt Vonnegut, Jr's, fictional novel, Cat's Cradle, is used to take what the students have learned and apply it to a new situation.
Liberko, Charles A. J. Chem. Educ. 2004, 81, 509.
Thermodynamics |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Noncovalent Interactions |
Calorimetry / Thermochemistry
Rubber Bands, Free Energy, and Le Châtelier's Principle  Warren Hirsch
Using a rubber band to illustrate Gibbs free energy, entropy, and enthalpy.
Hirsch, Warren. J. Chem. Educ. 2002, 79, 200A.
Noncovalent Interactions |
Thermodynamics |
Equilibrium
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics  Bryce E. Williamson and Tetsuo Morikawa
Presentation of a chemically relevant model that exemplifies many aspects of the second law: reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry.
Williamson, Bryce E.; Morikawa, Tetsuo. J. Chem. Educ. 2002, 79, 339.
Calorimetry / Thermochemistry |
Electrochemistry |
Thermodynamics
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
Disorder--A Cracked Crutch for Supporting Entropy Discussions  Frank L. Lambert
Arguments against using disorder as a means of introducing and teaching entropy.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 187.
Thermodynamics
A Simplified Method for Measuring the Entropy Change of Urea Dissolution. An Experiment for the Introductory Chemistry Lab  Charles A. Liberko and Stephanie Terry
Guided inquiry to determine values for changes in enthalpy, Gibb's free energy, and entropy for the dissolution of urea in water.
Liberko, Charles A.; Terry, Stephanie. J. Chem. Educ. 2001, 78, 1087.
Thermodynamics |
Calorimetry / Thermochemistry
Interpretation of Second Virial Coefficient  Vivek Utgikar
Identifying the gel point of a polymer using a multimeter.
Utgikar, Vivek. J. Chem. Educ. 2000, 77, 1409.
Kinetics |
Lasers |
Spectroscopy |
Gases |
Thermodynamics
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
Shuffled Cards, Messy Desks, and Disorderly Dorm Rooms - Examples of Entropy Increase? Nonsense!  Frank L. Lambert
Simply changing the location of everyday macro objects from an arrangement that we commonly judge as orderly to one that appears disorderly is a "zero change" in the thermodynamic entropy of the objects because the number of accessible energetic microstates in any of them has not been changed.
Lambert, Frank L. J. Chem. Educ. 1999, 76, 1385.
Nonmajor Courses |
Statistical Mechanics |
Thermodynamics
Thermodynamics and Spontaneity (the author replies)  Ochs, Raymond S.
The term "spontaneous" is historical baggage.
Ochs, Raymond S. J. Chem. Educ. 1998, 75, 659.
Thermodynamics
Thermodynamics and Spontaneity  Earl, Boyd L.
The term "spontaneous" is worth keeping in the chemistry lexicon.
Earl, Boyd L. J. Chem. Educ. 1998, 75, 658.
Thermodynamics
Letters to the Editor  
The term "spontaneous" is worth keeping in the chemistry lexicon.
J. Chem. Educ. 1998, 75, 658.
Thermodynamics
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
A Brief History of Thermodynamics Notation  Rubin Battino, Laurence E. Strong, Scott E. Wood
This paper gives a brief history of thermodynamic notation for the energy, E, enthalpy, H, entropy, S, Gibbs energy, G, Helmholtz energy, A, work, W, heat, Q, pressure, P, volume, V, and temperature, T. In particular, the paper answers the question, "Where did the symbol S for entropy come from?"
Battino, Rubin; Strong Laurence E.; Wood, Scott E. J. Chem. Educ. 1997, 74, 304.
Thermodynamics
In Defense of Thermodynamics - An Animate Analogy  Sture Nordholm
In order to illustrate the deepest roots of thermodynamics and its great power and generality, it is applied by way of analogy to human behavior from an economic point of view.
Nordholm, Sture. J. Chem. Educ. 1997, 74, 273.
Thermodynamics
Thermodynamics and Spontaneity  Raymond S. Ochs
Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject.
Ochs, Raymond S. J. Chem. Educ. 1996, 73, 952.
Thermodynamics |
Learning Theories |
Equilibrium
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
Probing Student Misconceptions in Thermodynamics with In-Class Writing  Beall, Herbert
Examples of the use of in-class writing assignments in the teaching of thermodynamics in general chemistry are presented.
Beall, Herbert J. Chem. Educ. 1994, 71, 1056.
Thermodynamics
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
A call for simplification   Schomaker, Verner; Waser, Jurg
Does "An Instructive Gibbs-Function Problem" unnecessarily confuse even the most capable students? An exchange of letters.
Schomaker, Verner; Waser, Jurg J. Chem. Educ. 1991, 68, 443.
Thermodynamics
A call for simplification   Peterson, Donald
Does "An Instructive Gibbs-Function Problem" unnecessarily confuse even the most capable students? An exchange of letters.
Peterson, Donald J. Chem. Educ. 1991, 68, 443.
Thermodynamics |
Reactions
With Clausius from energy to entropy  Baron, Maximo
Examination of entropy following the route taken by Clausius.
Baron, Maximo J. Chem. Educ. 1989, 66, 1001.
Thermodynamics
Chemical generation and visualization of hydrodynamic instability: An extremely simple demonstration of self-organization  Bowers, Peter G.; Soltzberg, Leonard J.
The chemical convection system described here is the pattern formation seen when an acidic vapor comes into contact with the surface of an aqueous solution containing indicator.
Bowers, Peter G.; Soltzberg, Leonard J. J. Chem. Educ. 1989, 66, 210.
Thermodynamics |
Aqueous Solution Chemistry |
Acids / Bases
Self-organization in chemistry: The larger context   Soltzberg, Leonard J.
The following three papers in this symposium will serve the reader as a good introduction to self-organization in chemical systems.
Soltzberg, Leonard J. J. Chem. Educ. 1989, 66, 187.
Thermodynamics
Thermodynamics and the bounce  Carraher, Charles E., Jr.
Explaining the bouncing of a rubber ball using the laws of thermodynamics.
Carraher, Charles E., Jr. J. Chem. Educ. 1987, 64, 43.
Thermodynamics
A new road to reactions: Part III. Teaching the heat effect of reactions  de Vos, Wobbe; Verdonk, Adri H.
This series of work summarizes the authors' work on the concept of chemical reactions as a teaching and learning problem.
de Vos, Wobbe; Verdonk, Adri H. J. Chem. Educ. 1986, 63, 972.
Thermodynamics |
Reactions |
Solutions / Solvents |
Acids / Bases
Thermodynamics and reactions in the dry way  Tykodi, Ralph J.
In dealing with reactions in the dry way, we can actually "see" in detail the workings of the thermodynamic machinery responsible for moving the reaction in the spontaneous direction. This note presents ideas at the general chemistry level.
Tykodi, Ralph J. J. Chem. Educ. 1986, 63, 107.
Thermodynamics |
Oxidation / Reduction
Constant properties of systems: A rationale for the inclusion of thermodynamics in a high school chemistry course  Schultz, Ethel L.
Using the zinc / copper system to illustrate how the thermodynamic functions can be introduced gradually and naturally into a course of study.
Schultz, Ethel L. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Should thermodynamics be X-rated?  Bent, Henry A.
The benefits and detractions of teaching thermodynamics in high school and introductory college courses.
Bent, Henry A. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Further reflections on heat  Hornack, Frederick M.
Confusion regarding the nature of heat and thermodynamics.
Hornack, Frederick M. J. Chem. Educ. 1984, 61, 869.
Kinetic-Molecular Theory |
Thermodynamics |
Calorimetry / Thermochemistry
Entropy and its relation to work  Richardson, W. S.
The relationship of entropy to the disorder of a system can be explained using a deck of playing cards.
Richardson, W. S. J. Chem. Educ. 1982, 59, 649.
Thermodynamics
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
Why thermodynamics should not be taught to freshmen, or who owns the problem?  Battino, Rubin
Thermodynamics should not be taught to freshmen - there are better things to do with the time.
Battino, Rubin J. Chem. Educ. 1979, 56, 520.
Thermodynamics
What thermodynamics should be taught to freshmen, or what is the goal?  Campbell, J. A.
The great majority of students in first-year college courses must try to work problems involving changes in enthalpy, entropy, and Gibbs Free Energy.
Campbell, J. A. J. Chem. Educ. 1979, 56, 520.
Thermodynamics
An apparent contradiction in the application of the principle of Le Chtelier  Mellon, E. K.
Unless some care is exercised, the application of free energy concepts in situations where marked temperature changes occur can lead to apparent contradictions like the one described in this paper.
Mellon, E. K. J. Chem. Educ. 1979, 56, 380.
Equilibrium |
Thermodynamics
Entropy and rubbery elasticity  Nash, Leonard K.
Thermodynamic analysis of the polymeric molecules of rubber.
Nash, Leonard K. J. Chem. Educ. 1979, 56, 363.
Thermodynamics |
Molecular Properties / Structure |
Statistical Mechanics
Teaching about "why do chemical reactions occur": Gibbs free energy  Vamvakis, Steven N.; Schmuckler, Joseph S.
Approaching the topic of Gibbs free energy from the student's prior experience in algebra and geometry, it is possible to construct a proof that should enable students to explain the derivation of G = H - TS.
Vamvakis, Steven N.; Schmuckler, Joseph S. J. Chem. Educ. 1977, 54, 757.
Thermodynamics |
Reactions
Lecture table experimental demonstration of entropy  Dole, Malcolm
Apparatus for demonstrating entropy that involves heating a stretched rubber band with hot steam.
Dole, Malcolm J. Chem. Educ. 1977, 54, 754.
Thermodynamics
Free energy surfaces and transition state theory  Cruickshank, F. R.; Hyde, A. J.; Pugh, D.
130/131. Unless free energy diagrams are very precisely labeled and explained they are seriously misleading and often incorporate a major error of principle. [Note: This should be #130 in the series, as shown in the table of contents. But p. 288 shows #131. The error was not caught, so the next one in the series is #132. The present article is both #130 and #131.]
Cruickshank, F. R.; Hyde, A. J.; Pugh, D. J. Chem. Educ. 1977, 54, 288.
Thermodynamics
Brief introduction to the three laws of thermodynamics  Stevenson, Kenneth L.
Brief descriptions of the three laws of thermodynamics.
Stevenson, Kenneth L. J. Chem. Educ. 1975, 52, 330.
Thermodynamics
A vigorous, spontaneous endothermic reaction   Hawkins, Malcolm D.

Hawkins, Malcolm D. J. Chem. Educ. 1974, 51, A178.
Thermodynamics
Physical chemistry of the drinking duck  Plumb, Robert C.; Wagner, Robert E.
The operation of the drinking bird is easily understood in terms of a few elementary physical chemistry principles.
Plumb, Robert C.; Wagner, Robert E. J. Chem. Educ. 1973, 50, 213.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Equilibrium
Entropy and a rubber band  Laswick, Patty Hall
A temperature change is noted when a rubber band held against the cheek is stretched and then released.
Laswick, Patty Hall J. Chem. Educ. 1972, 49, 469.
Thermodynamics
The second law - How much, how soon, to how many?  Bent, Henry A.
Discussion of the conceptual components of thermodynamics, their mathematical requirements, and where they might be best placed in the curriculum.
Bent, Henry A. J. Chem. Educ. 1970, 47, 337.
Thermodynamics |
Calorimetry / Thermochemistry
Demonstrations of spontaneous endothermic reactions  Matthews, G. W. J.
The reaction between hydrated metal chlorides and thionyl chloride provides a series of valuable experiments that can be used to demonstrate spontaneous endothermic reactions.
Matthews, G. W. J. J. Chem. Educ. 1966, 43, 476.
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
A second lecture in thermodynamics  Burton, Milton
Outlines an introduction for the three laws of thermodynamics
Burton, Milton J. Chem. Educ. 1962, 39, 500.
Thermodynamics
The second law of thermodynamics: Introduction for beginners at any level  Bent, Henry A.
Examines and offers suggestions for dealing with some of the challenges in teaching thermodynamics at an introductory level.
Bent, Henry A. J. Chem. Educ. 1962, 39, 491.
Thermodynamics
How can you tell whether a reaction will occur?  MacWood, George E.; Verhoek, Frank H.
This paper attempts to answer the title question in a clear and direct fashion.
MacWood, George E.; Verhoek, Frank H. J. Chem. Educ. 1961, 38, 334.
Thermodynamics