Journal Articles: 21 results
Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery  Hiromasa Goto, Hiroyuki Yoneyama, Fumihiro Togashi, Reina Ohta, Akitsu Tsujimoto, Eiji Kita, and Ken-ichi Ohshima
The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level.
Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi. J. Chem. Educ. 2008, 85, 1067.
Aromatic Compounds |
Conductivity |
Electrochemistry |
Materials Science |
Oxidation / Reduction |
Thermal Analysis of Plastics  Teresa D'Amico, Craig J. Donahue, and Elizabeth A. Rais
Students interpret previously recorded scans generated by differential scanning calorimetry and thermal gravimetric analysis to investigate a polypropylene dog bone, a polyethylene terephthalate pop bottle, the plastics in automobile head- and taillights, fishing line and a tea bag, and the rubber tread of an automobile tire.
D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A. J. Chem. Educ. 2008, 85, 404.
Materials Science |
Polymerization |
Thermal Analysis
Chemical Bonding Makes a Difference!  Mary Harris
This report describes a PowerPoint presentation that shows how a small difference in bonding can result in a drastic change in the properties of a material.
Harris, Mary. J. Chem. Educ. 2006, 83, 1435.
Enrichment / Review Materials |
Materials Science |
Polymerization |
Polymers: Cornerstones of Construction  John P. Droske and Charles E. Carraher, Jr.
This report summarizes the application of natural and synthetic polymers as building materials.
Droske, John P.; Carraher, Charles E., Jr. J. Chem. Educ. 2006, 83, 1428.
Materials Science |
Applications of Chemistry
Measuring Viscoelastic Deformation with an Optical Mouse  T. W. Ng
A simple demonstration of viscoelasticity can be carried out by attaching a weight to a polymer film and watching it extend over time. For accurate and quantifiable data on the deformation, an electronic displacement sensor should be incorporated. Most of such sensors are expensive. Here, an optical mouse was demonstrated to provide accurate data at low cost. The experiment was also devised in a manner to allow students to learn about viscoelastic deformation experientially.
Ng, T. W. J. Chem. Educ. 2004, 81, 1628.
Consumer Chemistry |
Laboratory Equipment / Apparatus |
Materials Science
Chemical Recycling of Pop Bottles: The Synthesis of Dibenzyl Terephthalate from the Plastic Polyethylene Terephthalate  Craig J. Donahue, Jennifer A. Exline, and Cynthia Warner
Procedure in which students depolymerize a common plastic (PET from 2-L pop bottles) under mild conditions using nontoxic chemicals to produce monomer building blocks.
Donahue, Craig J.; Exline, Jennifer A.; Warner, Cynthia. J. Chem. Educ. 2003, 80, 79.
Industrial Chemistry |
Synthesis |
Aromatic Compounds |
LEDs: New Lamps for Old and a Paradigm for Ongoing Curriculum Modernization  S. Michael Condren, George C. Lisensky, Arthur B. Ellis, Karen J. Nordell, Thomas F. Kuech, and Steve Stockman
Summary of the key points of a white paper on LEDs as potential replacements for a significant fraction of vehicle, display, home, and workplace lighting, with substantial safety and environmental conserving benefits.
Condren, S. Michael; Lisensky, George C.; Ellis, Arthur B.; Nordell, Karen J.; Kuech, Thomas F.; Stockman, Steve. J. Chem. Educ. 2001, 78, 1033.
Materials Science |
Nanotechnology |
Semiconductors |
Solid State Chemistry |
Applications of Chemistry
A Polymer "Pollution Solution" Classroom Activity  Terry L. Helser
An active classroom project testing the solubility of foam packing nuggets is described.
J. Chem. Educ. 1996, 73, 843.
Polymerization |
Polymers and Material Science: A Course for Nonscience Majors   Anderson, Janet S.
In an effort to provide a more appropriate science experience for nonscience majors, a course was designed to introduce them to polymer chemistry and properties.
Anderson, Janet S. J. Chem. Educ. 1994, 71, 1044.
Nonmajor Courses |
Materials Science
Not So Late Night Chemistry with USD  Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R.
Through the program, college students enhance their knowledge and expertise on a chemical topic and gain experience in scientific presentations. They also serve as role models to the high school students who can relate to college students more easily than the chemistry faculty members and their high school students.
Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R. J. Chem. Educ. 1994, 71, 929.
Forensic Chemistry |
Polymerization |
Electrochemistry |
Isotopes |
Acids / Bases
Chemistry of polymers, proteins, and nucleic acids: A short course on macromolecules for secondary schools  Lulav, Ilan; Samuel, David
Topics considered in a macromolecular chemistry unit for advanced high school chemistry students.
Lulav, Ilan; Samuel, David J. Chem. Educ. 1985, 62, 1075.
Polymerization |
Proteins / Peptides
Synthesis and a simple molecular weight determination of polystyrene  Armstrong, Daniel W.; Marx, John N.; Kyle, Don; Alak, Ala
Procedure for synthesizing styrene and determining its molecular weight using thin layer chromatography.
Armstrong, Daniel W.; Marx, John N.; Kyle, Don; Alak, Ala J. Chem. Educ. 1985, 62, 705.
Synthesis |
Polymerization |
Petroleum chemistry  Kolb, Doris; Kolb, Kenneth E.
The history of petroleum chemistry.
Kolb, Doris; Kolb, Kenneth E. J. Chem. Educ. 1979, 56, 465.
Natural Products |
Geochemistry |
Applications of Chemistry |
Industrial Chemistry |
Catalysis |
Plastics: Utilizing the properties of string-like molecules  J. Chem. Educ. Staff
A summary of the properties of common polymers.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 42.
Polymerization |
Molecular Properties / Structure |
Applications of Chemistry
Emulsion polymerization and film formation of dispersed polymeric particles  Ceska, Gary W.
This project illustrates the principles of emulsion polymerization, copolymerization, glass transition temperature (Tg), and the effect of Tg on polymer properties.
Ceska, Gary W. J. Chem. Educ. 1973, 50, 767.
Conferences |
Professional Development |
An inexpensive method to produce plastic models of solids  Salmon, J. F. S. J.; Polley, C. A.
Method for using moulage to produce plastic models of solids.
Salmon, J. F. S. J.; Polley, C. A. J. Chem. Educ. 1973, 50, 726.
Solids |
Molecular Modeling |
Solid State Chemistry
A course for engineering and science students. Materials science in freshman chemistry  Companion, A.; Schug, K.
Description of a materials science in freshman chemistry.
Companion, A.; Schug, K. J. Chem. Educ. 1973, 50, 618.
Materials Science
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
The nylon rope trick: Demonstration of condensation polymerization  Morgan, Paul W.; Kwolek, Stephanie L.
Describes the chemistry and variations of the classic polymerization demonstration.
Morgan, Paul W.; Kwolek, Stephanie L. J. Chem. Educ. 1959, 36, 182.
Permanent packing type crystal models  Kenney, Malcolm E.
Crystal models made of styrofoam balls are more durable if packed in clear plastic boxes.
Kenney, Malcolm E. J. Chem. Educ. 1958, 35, 513.
Crystals / Crystallography |
Solids |
Molecular Modeling
Linear polymerization and synthetic fibers  Moncrieff, Robert W.
Examines early research in polymers, the synthesis of polyesters and polyamides, the polymerization of hydrocarbons, and condensation and addition polymerization.
Moncrieff, Robert W. J. Chem. Educ. 1954, 31, 233.