TIGER

Journal Articles: 7 results
Freezing Point of Milk: A Natural Way To Understand Colligative Properties  Mercedes Novo, Belén Reija, and Wajih Al-Soufi
Presents a laboratory experiment that illustrates the use of freezing point measurements to control milk quality and determine molecular weight.
Novo, Mercedes; Reija, Belén; Al-Soufi, Wajih. J. Chem. Educ. 2007, 84, 1673.
Consumer Chemistry |
Food Science |
Natural Products |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents
The Chemical Composition of Honey  David W. Ball
Explores the complex chemical composition of honey.
Ball, David W. J. Chem. Educ. 2007, 84, 1643.
Descriptive Chemistry |
Food Science |
Natural Products |
Solutions / Solvents
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Molar Mass by Freezing Point Depression  Ronald P. D'Amelia, Thomas Franks, and William F. Nirode
The work described herein uses differential scanning calorimetry to determine the molar mass of three unknowns (nonvolatile organic hydrocarbons) by freezing point depression.
D'Amelia, Ronald P.; Franks, Thomas; Nirode, William F. J. Chem. Educ. 2006, 83, 1537.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermal Analysis |
Solutions / Solvents
On the Importance of Ideality  Rubin Battino, Scott E. Wood, and Arthur G. Williamson
Analysis of the utility of ideality in gaseous phenomena, solutions, and the thermodynamic concept of reversibility.
Battino, Rubin; Wood, Scott E.; Williamson, Arthur G. J. Chem. Educ. 2001, 78, 1364.
Thermodynamics |
Gases |
Solutions / Solvents
Floating Plastics: An Initial Chemistry Laboratory Experience  Enrique A. Hughes, Helena M. Ceretti, and Anita Zalts
Students prepare a series of solutions with gradually increasing densities. Then they are given plastic samples of known and unknown composition and they estimate the densities of the samples by observing in which solutions they float and in which they sink; these densities are used to identify the plastics.
Hughes, Enrique A.; Ceretti, Helena M.; Zalts, Anita. J. Chem. Educ. 2001, 78, 522.
Nonmajor Courses |
Solutions / Solvents |
Physical Properties
Osmotic Pressure and Electrochemical Potential--A Parallel   Rainer Bausch
Comparison of osmotic pressure and electrochemical potential.
Bausch, Rainer. J. Chem. Educ. 1995, 72, 713.
Electrochemistry |
Solutions / Solvents |
Membranes |
Transport Properties
Entropy Makes Water Run Uphill - in Trees  Stevenson, Philip E.
Explains how Sequoias over 300 feet tall can draw water up to their topmost leaves.
Stevenson, Philip E. J. Chem. Educ. 1971, 48, 837.
Applications of Chemistry |
Thermodynamics |
Plant Chemistry |
Membranes |
Transport Properties |
Solutions / Solvents