TIGER

Journal Articles: 25 results
More on ClO and Related Radicals  William B. Jensen
The novel Lewis structure for the ClO radical and other related 13e isoelectronic species presented by Hirsch and Kobrak is identical to that proposed by Linnett over 40 years ago for the same species on the basis of his well-known double-quartet approach to Lewis structures.
Jensen, William B. J. Chem. Educ. 2008, 85, 783.
Ionic Bonding |
Lewis Structures |
Free Radicals
The Chemistry of Paper Preservation  Henry A. Carter
This article examines the applications of chemistry to paper preservation. The acid-catalyzed hydrolysis of cellulose accounts for the deterioration of paper in library books and other written records. To combat this threat to our written heritage, new permanent papers have been developed that are relatively chemically stable and undergo a very slow rate of deterioration.
Carter, Henry A. J. Chem. Educ. 2007, 84, 1937.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
Free Radicals |
Gas Chromatography |
HPLC |
pH |
Kinetics |
Rate Law
Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate  Bruce Mattson and Trisha Hoette
In this demonstration, a hydrogen flame is played across the face of an ice cube and the combustion is quenched in an incomplete state. The resulting solution contains a stable side-product, hydrogen peroxide, whose presence can be verified with two simple chemical tests.
Mattson, Bruce; Hoette, Trisha. J. Chem. Educ. 2007, 84, 1668.
Descriptive Chemistry |
Free Radicals |
Gases |
Molecular Properties / Structure |
Reactions |
Reactive Intermediates
Lewis Structure Representation of Free Radicals Similar to ClO  Warren Hirsch and Mark Kobrak
An unconventional Lewis structure is proposed to explain the properties of the free radical ClO and a series of its isoelectronic analogues, particularly trends in the spin density of these species.
Hirsch, Warren; Kobrak, Mark. J. Chem. Educ. 2007, 84, 1360.
Atmospheric Chemistry |
Computational Chemistry |
Covalent Bonding |
Free Radicals |
Lewis Structures |
Molecular Modeling |
MO Theory |
Valence Bond Theory
pHantastic Fluorescence  Mark Muyskens
Students easily extract a fluorescent substance from shavings of a wood called narra. The fluorescence is dramatically pH dependent and can be turned on and off repeatedly using commonly available acid and base solutions.
Muyskens, Mark. J. Chem. Educ. 2006, 83, 768A.
Fluorescence Spectroscopy |
Natural Products |
Nucleophilic Substitution |
pH |
Solutions / Solvents |
UV-Vis Spectroscopy
Chemical Composition of a Fountain Pen Ink   J. Martín-Gil, M. C. Ramos-Sánchez, F. J. Martín-Gil, and M. José-Yacamán
Black ink (Parker Quink) widely used in 19501980 is characterized and compared with other traditional inks. There is agreement that the main cause of ink decay is the iron(II) sulfate content, whose effect is stronger than the destructive action of acids.
Martín-Gil, J.; Ramos-Sánchez, M. C.; Martín-Gil, F. J.; José-Yacamán, M. J. Chem. Educ. 2006, 83, 1476.
Applications of Chemistry |
Bioinorganic Chemistry |
Dyes / Pigments |
Free Radicals |
Reactions
Factors That Influence Relative Acid Strength in Water: A Simple Model  Michael J. Moran
The pKa's of diverse aqueous acids HA correlate well with the sum of two gas-phase properties: the HA bond-dissociation enthalpy and the electron affinity of the A radical. It is suggested that rather than bond strength alone or bond polarity, the sum of the enthalpies of these two steps is a fairly good indicator of relative acidity.
Moran, Michael J. J. Chem. Educ. 2006, 83, 800.
Acids / Bases |
Aqueous Solution Chemistry |
Atomic Properties / Structure |
Free Radicals
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
Introduction to Photolithography: Preparation of Microscale Polymer Silhouettes  Kimberly L. Berkowski, Kyle N. Plunkett, Qing Yu, and Jeffrey S. Moore
In this experiment, a glass microscope slide acts as the microchip. Students can pattern this "microchip" by layering negative photoresist on the slide using a solution containing monomer, crosslinker, photoinitiator, and dye. The students then cover the photoresist with a photomask, which is the negative of a computer-generated image or text printed on transparency film, and illuminate it with UV light. The photoresist in the exposed area polymerizes into a polymer network with a shape dictated by the photomask. The versatility of this technique is exemplified by allowing each student to fabricate virtually any shape imaginable, including his or her silhouette.
Berkowski, Kimberly L.; Plunkett, Kyle N.; Yu, Qing; Moore, Jeffrey S. J. Chem. Educ. 2005, 82, 1365.
Materials Science |
Applications of Chemistry |
Free Radicals |
Polymerization
A Substitute for “Bromine in Carbon Tetrachloride”  Joshua M. Daley and Robert G. Landolt
Benzotrifluoride (BTF) is a suitable solvent substitute for carbon tetrachloride in experiments requiring application of bromine (Br2) in free radical or addition reactions with organic substrates. A 1 M solution of Br2 in BTF may be used to distinguish hydrocarbons based on the ease of abstraction of hydrogen atoms in thermally or light-induced free radical substitutions. Efficacy of minimization of solvent use, by aliquot addition to neat samples, has been established.
Daley, Joshua M.; Landolt, Robert G. J. Chem. Educ. 2005, 82, 120.
Alkenes |
Free Radicals |
Green Chemistry |
Qualitative Analysis |
Reactions
Mechanism Templates: Lecture Aids for Effective Presentation of Mechanism in Introductory Organic Chemistry  Brian J. McNelis
To promote active student learning of mechanism in introductory organic chemistry, hand-outs have been developed with incomplete structures for reaction processes depicted, which are called mechanism templates. The key to these lecture aids is to provide only enough detail in the diagram to facilitate notetaking, ensuring that these templates are dynamic learning tools that must be utilized by an engaged and alert student.
Brian J. McNelis. J. Chem. Educ. 1998, 75, 479.
Learning Theories |
Mechanisms of Reactions |
Reactions |
Addition Reactions |
Acids / Bases |
Electrophilic Substitution |
Nucleophilic Substitution
Methanol Cannon Demonstrations Revisited  David A. Dolson, Michael E. Dolson, Michael R. Hall, Rubin Battino, Lisa S. Jutte
Demonstrations involving methanol cannons and chain reactions.
Dolson, David A.; Dolson, Michael E.; Hall, Michael R.; Battino, Rubin; Jutte, Lisa S. J. Chem. Educ. 1995, 72, 732.
Free Radicals |
Reactions |
Alcohols
Introducing Atmospheric Reactions: A Systematic Approach for Students  Baird, N. Colin
Outline of the dominant reactions that occur in air, particularly with regard to atmospheric pollutants.
Baird, N. Colin J. Chem. Educ. 1995, 72, 153.
Photochemistry |
Free Radicals |
Atmospheric Chemistry
Chart for Deciding Mechanism for Reaction of Alkyl Halide with Nucleophile/Base  McClelland, Bruce W.
The decision chart offered here is based upon the well-known and accepted characteristics of the reaction system mechanisms described in typical introductory organic chemistry textbooks.
McClelland, Bruce W. J. Chem. Educ. 1994, 71, 1047.
Mechanisms of Reactions |
Nucleophilic Substitution
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
Free-radical polymerization of acrylamide  Silversmith, Ernest F.
A rapid and foolproof thermal polymerization.
Silversmith, Ernest F. J. Chem. Educ. 1992, 69, 763.
Free Radicals |
Polymerization |
Reactions
A spectacular demonstration: 2H2 + O2 -> 2H2O  Skinner, James F.
Detonating hydrogen in a copper combustion chamber.
Skinner, James F. J. Chem. Educ. 1987, 64, 545.
Reactions |
Free Radicals
Chain reaction wheel: An approach to free radical reactions  Monroe, Manus; Abrams, Karl
Using a "chain reaction wheel" to help students understand the mechanism of free radical reactions.
Monroe, Manus; Abrams, Karl J. Chem. Educ. 1985, 62, 467.
Free Radicals |
Reactions |
Mechanisms of Reactions
Hydrolysis of benzenediazonium ion  Sheats, John E.; Harbison, Kenneth G.
Presents a more convenient approach to studying the kinetics of the hydrolysis of benzenediazonium ion.
Sheats, John E.; Harbison, Kenneth G. J. Chem. Educ. 1970, 47, 779.
Aromatic Compounds |
Nucleophilic Substitution |
Kinetics
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Parris, Michael
(1) Explains how free radicals differ from species such as NO3- and NH4+. (2) Explains why HI is a stronger acid than HF in aqueous solution. - answer by Parris. (3) Explains that it is possible to alter the half-life of a some radioactive processes through chemical means.
Young, J. A.; Malik, J. G.; Parris, Michael J. Chem. Educ. 1970, 47, 697.
Free Radicals |
Acids / Bases |
Aqueous Solution Chemistry |
Nuclear / Radiochemistry |
Isotopes
Demonstration of photochemistry and the dimerization and trapping of free radicals  Silversmith, Ernest F.
This demonstration uses simple equipment and involves a rapid, readily noticeable color change and also illustrates dimerization and the trapping of free radicals.
Silversmith, Ernest F. J. Chem. Educ. 1970, 47, 315.
Photochemistry |
Free Radicals |
Reactions
Bimolecular nucleophilic displacement reactions  Edwards, John O.
The bimolecular nucleophilic displacement reaction is important and should be included in any detailed discussion of kinetics and mechanism at an early undergraduate level.
Edwards, John O. J. Chem. Educ. 1968, 45, 386.
Reactions |
Nucleophilic Substitution |
Kinetics |
Mechanisms of Reactions
A simple model for the SN2 mechanism.  Nyquist, H. LeRoy
Presents a simple, physical model for the SN2 mechanism.
Nyquist, H. LeRoy J. Chem. Educ. 1965, 42, 103.
Molecular Modeling |
Reactions |
Nucleophilic Substitution |
Mechanisms of Reactions
A second order kinetics experiment  Teerlink, Wilford J.; Asay, Jeanette; Sugihara, James M.
Investigates the nucleophilic displacement reaction of ethyl p-toluenesulfonate by iodide in acetone.
Teerlink, Wilford J.; Asay, Jeanette; Sugihara, James M. J. Chem. Educ. 1964, 41, 161.
Kinetics |
Nucleophilic Substitution
Balancing organic redox equations  Burrell, Harold P. C.
This paper presents a method for balancing organic redox equations based on the study of structural formulas and an artificial device - the use of hypothetical free radicals.
Burrell, Harold P. C. J. Chem. Educ. 1959, 36, 77.
Stoichiometry |
Oxidation / Reduction |
Free Radicals