TIGER

Journal Articles: 31 results
Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory  Kristen L. Cacciatore, Jose Amado, Jason J. Evans, and Hannah Sevian
Presents a novel first-year chemistry experiment that asks students to replicate procedures described in sample lab reports that lack essential information. This structure is designed to promote students' experimental design and data analysis skills as well as their understanding of the importance and essential qualities of written and verbal communication between scientists.
Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah. J. Chem. Educ. 2008, 85, 251.
Equilibrium |
Green Chemistry |
Periodicity / Periodic Table |
Solutions / Solvents |
Stoichiometry |
Titration / Volumetric Analysis
The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class  Jeffrey J. Keaffaber, Ramiro Palma, and Kathryn R. Williams
Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. This article uses a hypothetical tank to house ocean sunfish as a model to show students the calculations and other considerations that are needed when designing a marine aquarium.
Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R. J. Chem. Educ. 2008, 85, 225.
Acids / Bases |
Aqueous Solution Chemistry |
Consumer Chemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
What Happens When Chemical Compounds Are Added to Water? An Introduction to the Model–Observe–Reflect–Explain (MORE) Thinking Frame  Adam C. Mattox, Barbara A. Reisner, and Dawn Rickey
This article describes a laboratory designed to help students understand how different compounds behave when dissolved in water, and introduces the modelobservereflectexplain (MORE) thinking frame, an instructional tool that encourages students to connect macroscopic observations with their understanding of the behavior of particles at the molecular level.
Mattox, Adam C.; Reisner, Barbara A.; Rickey, Dawn. J. Chem. Educ. 2006, 83, 622.
Aqueous Solution Chemistry |
Conductivity |
Ionic Bonding |
Solutions / Solvents |
Stoichiometry
Linking Laboratory Experiences to the Real World: The Extraction of Octylphenoxyacetic Acid from Water  Jorge E. Loyo-Rosales, Alba Torrents, Georgina C. Rosales-Rivera, and Clifford P. Rice
A known quantity of the sodium salt of octylphenoxyacetic acid is dissolved in water, transformed to the acid (insoluble) form, and extracted using dichloromethane. These changes can be followed visually owing to conspicuous changes in solution turbidity.
Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford P. J. Chem. Educ. 2006, 83, 248.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
pH |
Stoichiometry |
Nonmajor Courses |
Water / Water Chemistry
Well Wishes. A Case on Septic Systems and Well Water Requiring In-Depth Analysis and Including Optional Laboratory Experiments  Mary M. Walczak and Juliette M. Lantz
This paper describes the use of a case study to teach introductory chemistry students the chemical principles of solution concentration (especially ppm) and dilution, aqueous redox reactions, and stoichiometric conversions between different solution species.
Walczak, Mary M.; Lantz, Juliette M. J. Chem. Educ. 2004, 81, 218.
Consumer Chemistry |
Water / Water Chemistry |
Solutions / Solvents |
Oxidation / Reduction |
Stoichiometry
A Concept-Based Environmental Project for the First-Year Laboratory: Remediation of Barium-Contaminated Soil by In Situ Immobilization  Heather D. Harle, Phyllis A. Leber, Kenneth R. Hess, and Claude H. Yoder
Simulating the detection and remediation of lead-contaminated soil using barium.
Harle, Heather D.; Leber, Phyllis A.; Hess, Kenneth R.; Yoder, Claude H. J. Chem. Educ. 2003, 80, 561.
Synthesis |
Stoichiometry |
Precipitation / Solubility |
Qualitative Analysis |
Quantitative Analysis |
Metals |
Aqueous Solution Chemistry |
Gravimetric Analysis |
Applications of Chemistry
Mole, Mole per Liter, and Molar: A Primer on SI and Related Units for Chemistry Students  George Gorin
A brief historical overview of the SI system, the concept of the mole and the definition of mole unit, the status of the liter in the metric and SI systems, and the meaning of molar and molarity.
Gorin, George. J. Chem. Educ. 2003, 80, 103.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Enrichment / Review Materials
Determination of the Empirical Formula of a Copper Oxide Salt Using Two Different Methods  Michael J. Sanger and Kimberly Geer
Converting copper oxide into copper metal using two different methods: reduction of copper oxide to copper metal using methane gas, and reduction of copper oxide to copper metal using aluminum in aqueous solution; the results are used to determine the empirical formula of copper oxide.
Sanger, Michael J.; Geer, Kimberly. J. Chem. Educ. 2002, 79, 994.
Oxidation / Reduction |
Stoichiometry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Metals
A Cyclist's Guide to Ionic Concentration  Arthur M. Last
A simple analogy to help students understand ionic concentration is presented.
Last, Arthur M. J. Chem. Educ. 1998, 75, 1433.
Solutions / Solvents |
Stoichiometry
Solutions, anyone?  McCullough, Bro. Thomas
A simple, quick, and economical experiment which gives the student intimate hands-on contact with most quantitative measurements of solutions is described.
McCullough, Bro. Thomas J. Chem. Educ. 1992, 69, 293.
Solutions / Solvents |
Quantitative Analysis |
Stoichiometry
In praise of thiosulfate  Tykodi, R. J.
The reactions of thiosulfate make impressive lecture demonstrations and worthwhile laboratory experiments.
Tykodi, R. J. J. Chem. Educ. 1990, 67, 146.
Acids / Bases |
Precipitation / Solubility |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry
Determination of ammonia in household cleaners: an instrumental analysis experiment  Graham, Richard C.; DePew, Steven
This popular experiment describes a procedure that is easily modified to determine quantitatively such analytes as ammonia in solution.
Graham, Richard C.; DePew, Steven J. Chem. Educ. 1983, 60, 765.
Quantitative Analysis |
Titration / Volumetric Analysis |
Acids / Bases |
pH |
Consumer Chemistry |
Stoichiometry |
Solutions / Solvents
A practical application of molality  Penrose, John F.
The stoichiometry problem related in this note captures student interest.
Penrose, John F. J. Chem. Educ. 1983, 60, 63.
Solutions / Solvents |
Stoichiometry
An approximate determination of Avogadro's constant  Szll, Thomas; Dennis, David; Jouas, Jean-Pierre; Wong, Mabel
An experiment to determine a value for Avogadro's number by determining the relationship between the number of electrons flowing through an acidified solution of water and the number of moles of electrons which reduce hydrogen ions to produce hydrogen gas.
Szll, Thomas; Dennis, David; Jouas, Jean-Pierre; Wong, Mabel J. Chem. Educ. 1980, 57, 735.
Stoichiometry |
Electrochemistry |
Aqueous Solution Chemistry
Mole fraction analogies  DeLorenzo, Ron
An analogy to help students solve concentration problems.
DeLorenzo, Ron J. Chem. Educ. 1980, 57, 733.
Stoichiometry |
Chemometrics |
Solutions / Solvents
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
On mole fractions in equilibrium constants  Delaney, C. M.; Nash, Leonard K.
Proposes a hybrid equilibrium constant for use in introductory chemistry courses.
Delaney, C. M.; Nash, Leonard K. J. Chem. Educ. 1977, 54, 151.
Equilibrium |
Stoichiometry |
Aqueous Solution Chemistry |
Solutions / Solvents
An experiment for introductory college chemistry. How to establish a chemistry equation  Masaguer, J. R.; Coto, M. Victoria; Casas, J. S.
The stoichiometry of the reaction between potassium chromate and barium chloride in an aqueous state is determined by using the height of of the precipitate formed when different amounts of both solutions are mixed in a graduated cylinder.
Masaguer, J. R.; Coto, M. Victoria; Casas, J. S. J. Chem. Educ. 1975, 52, 387.
Stoichiometry |
Precipitation / Solubility |
Reactions |
Aqueous Solution Chemistry
Mysterious stoichiometry  Bowman, L. H.; Shull, C. M.
The student's task in this experiment is to determine the composition of a compound of chromium produced in an electrolytic cell.
Bowman, L. H.; Shull, C. M. J. Chem. Educ. 1975, 52, 186.
Titration / Volumetric Analysis |
Quantitative Analysis |
Stoichiometry |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Strong, Laurence E.
(1) What evidence, understandable and acceptable to students, do most teachers cite to describe the transfer of charge from one electrode to another in the direct current electrolysis of an electrolyte solution? (2) What is a compound? - answer by Strong. (3) What is a molecule? - answer by Strong.
Young, J. A.; Malik, J. G.; Strong, Laurence E. J. Chem. Educ. 1970, 47, 523.
Electrochemistry |
Aqueous Solution Chemistry |
Stoichiometry |
Molecular Properties / Structure
A demonstration experiment on partial molar volumes  Coch, Juan A.; Lopez, Valentin
The partial molar volume of trichloroacetic acid can be determined by measuring the increase in volume when TCA is dissolved in water at constant temperature and pressure.
Coch, Juan A.; Lopez, Valentin J. Chem. Educ. 1970, 47, 270.
Solutions / Solvents |
Molecular Properties / Structure |
Stoichiometry
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
Notes on experiments for introductory college chemistry  
A brief set of notes regarding the complex salt [Co(NH3)5Cl]Cl2, the Guoy balance, Avogadro's number, and the stoichiometry of a mixture.
J. Chem. Educ. 1965, 42, 495.
Coordination Compounds |
Magnetic Properties |
Stoichiometry |
Solutions / Solvents
Experimental approach to stoichiometry. In first-year chemistry at Northwestern  King, L. Carroll; Cooper, Milton
Presents five experiments in which students are given a minimal set of directions and a simply stated objective.
King, L. Carroll; Cooper, Milton J. Chem. Educ. 1965, 42, 464.
Stoichiometry |
Coordination Compounds |
Undergraduate Research |
Aqueous Solution Chemistry |
Solutions / Solvents |
Precipitation / Solubility |
Titration / Volumetric Analysis
Writing a chemical equation from titration data: Experiment for general chemistry  State, Harold M.
Students titrate phosphoric acid with sodium hydroxide to determine the chemical formula of Na2HPO4.
State, Harold M. J. Chem. Educ. 1962, 39, 297.
Acids / Bases |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Stoichiometry
Calculating molar solubilities from equilibrium constants  Butler, James N.
Presents several examples of calculating molar solubilities from equilibrium constants.
Butler, James N. J. Chem. Educ. 1961, 38, 460.
Chemical Technicians |
Equilibrium |
Stoichiometry |
Qualitative Analysis |
Aqueous Solution Chemistry
Letters to the editor  Hall, Arthur C.
The molality-molarity paradox presented in an earlier article is artificial rather than apparent.
Hall, Arthur C. J. Chem. Educ. 1959, 36, 584.
Stoichiometry |
Solutions / Solvents |
Nomenclature / Units / Symbols
A molality-molarity paradox?  Toby, Sidney
The author points out that there seems no obvious reason why molality could not equal molarity in a solution whose density is less than unity.
Toby, Sidney J. Chem. Educ. 1959, 36, 230.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
A common misunderstanding of Hess' law  Davis, Thomas. W.
The statement, sometimes attributed to Hess, that "In any series of chemical or physical changes the total heat effect is independent of the path by which the system goes from its initial to its final state" is incorrect.
Davis, Thomas. W. J. Chem. Educ. 1951, 28, 584.
Stoichiometry |
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry