TIGER

Journal Articles: 22 results
Teaching Avogadro's Hypothesis and Helping Students to See the World Differently  Brett Criswell
This article uses a model from educational psychologyChi's theory of ontological misclassificationto explain the source of students' difficulties in understanding Avogadro's hypothesis and provide a method to successfully teach this fundamental concept.
Criswell, Brett. J. Chem. Educ. 2008, 85, 1372.
Atomic Properties / Structure |
Gases
Forecasting Periodic Trends: A Semester-Long Team Exercise for Nonscience Majors  John Tierney
Teams of students in a course for nonscience majors identify trends among the properties of elements in the periodic table, use Excel to plot and produce best-fit equations to describe relationships among those properties, and apply the resulting formulas to predict and justify the properties of missing elements.
Tierney, John. J. Chem. Educ. 2008, 85, 1215.
Atomic Properties / Structure |
Computational Chemistry |
Main-Group Elements |
Nonmetals |
Periodicity / Periodic Table |
Metals |
Student-Centered Learning
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
Introduction of Mass Spectrometry in a First-Semester General Chemistry Laboratory Course: Quantification of MTBE or DMSO in Water  Mike Solow
An experiment has been developed to introduce first-semester general chemistry students to mass spectrometry. Students analyze water samples contaminated with a known compound, either DMSO or MTBE. Students are asked to determine the concentration of the compound in the water. In performing this experiment, students should learn (i) how the mass of an atom or molecule is determined, (ii) the effect of the presence of different isotopes on molecular mass, (iii) the role of an internal standard, and (iv) how mass spectrometry is used in answering various scientific questions.
Solow, Mike. J. Chem. Educ. 2004, 81, 1172.
Instrumental Methods |
Mass Spectrometry |
Quantitative Analysis |
Water / Water Chemistry |
Gas Chromatography
Boiling Points of the Family of Small Molecules CHwFxClyBrz: How Are They Related to Molecular Mass?  Michael Laing
Investigating the role of molecular mass in determining boiling points of small molecules.
Laing, Michael. J. Chem. Educ. 2001, 78, 1544.
Atomic Properties / Structure |
Noncovalent Interactions |
Liquids |
Molecular Properties / Structure |
Physical Properties
The Mole, the Periodic Table, and Quantum Numbers: An Introductory Trio  Mali Yin and Raymond S. Ochs
Suggestions for presenting and developing three key ideas in chemistry: the mole, the periodic table, and quantum numbers.
Yin, Mali; Ochs, Raymond S. J. Chem. Educ. 2001, 78, 1345.
Nonmajor Courses |
Periodicity / Periodic Table |
Stoichiometry |
Atomic Properties / Structure
Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends  Kimberley A. Waldron, Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson
Using charge shielding to identify and explain trends within the periodic table.
Waldron, Kimberley A.; Fehringer, Erin M.; Streeb, Amy E.; Trosky, Jennifer E.; Pearson, Joshua J. J. Chem. Educ. 2001, 78, 635.
Periodicity / Periodic Table |
Theoretical Chemistry |
Atomic Properties / Structure
A Strategy for Incorporating Hands-On GC-MS into the General Chemistry Lecture and Laboratory Courses  Perry C. Reeves and Kim L. Pamplin
Students use the GC-MS to obtain spectra of the various halobenzenes. This vividly illustrates the differences in isotopic distributions of the halogens and the complications these differences present in calculating molar masses of compounds. The isotopic distribution of iron is then obtained from the mass spectrum of Fe(CO)5, and the students calculate the atomic mass of iron from this data.
Reeves, Perry C.; Pamplin, Kim L. J. Chem. Educ. 2001, 78, 368.
Chromatography |
Isotopes |
Mass Spectrometry |
Gas Chromatography |
Aromatic Compounds
No, the Molecular Mass of Bromobenzene Is Not 157 amu: An Exercise in Mass Spectrometry and Isotopes for Early General Chemistry  Steven M. Schildcrout
Even with no background in bonding and structure, students can successfully interpret the output of a modern research instrument. They learn to identify an isotope pattern, assign chemical formulas to ions giving mass spectral peaks, calculate an average atomic weight (for bromine) from measured isotopic abundances, and write balanced equations for ion fragmentation reactions.
Schildcrout, Steven M. J. Chem. Educ. 2000, 77, 1433.
Isotopes |
Mass Spectrometry |
Atomic Properties / Structure |
Molecular Properties / Structure
The Gravity of the Situation  Damon Diemente
This article presents a few calculations demonstrating that gravitational attraction between atoms is many orders of magnitude weaker than the gravitational attraction between Earth and an atom, and that the gravitational attraction between two ions is many orders of magnitude weaker than the electromagnetic attraction between them.
Diemente, Damon. J. Chem. Educ. 1999, 76, 55.
Atomic Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Comments invited on changes in definition of "atomic weight"  Richardson, D. E.
Invitation to comment on changes in definition of "atomic weight" by the Commission on Atomic Weights and Isotopic Abundances of IUPAC.
Richardson, D. E. J. Chem. Educ. 1992, 69, 736.
Atomic Properties / Structure
An overhead projector demonstration of nuclear beta emission   Fortman, John J.
This demonstration illustrates an analogy for beta emission, with its concurrent conversion of a neutron to a proton.
Fortman, John J. J. Chem. Educ. 1992, 69, 162.
Atomic Properties / Structure
A simple laboratory experiment illustrating the relative nature of atomic weights  Huff, Randolph B.; Evans, David W.
The concept of atomic weight scale remains a source of confusion for beginning chemistry students. This paper proposes a simple lab experience that could help students better understand this idea.
Huff, Randolph B.; Evans, David W. J. Chem. Educ. 1991, 68, 675.
Atomic Properties / Structure |
Periodicity / Periodic Table
A formula for calculating atomic radii of metals  Ping, Mei; Xiubin, Lei; Yuankai, Wen
In this paper, the authors present a theoretical formula for calculating metallic radii.
Ping, Mei; Xiubin, Lei; Yuankai, Wen J. Chem. Educ. 1990, 67, 218.
Atomic Properties / Structure |
Metals
Relative atomic mass scale: A teaching aid  Baumgartner, Erwin; Benitez, Carlos; Cirelli, Alicia Fernandez; Flores, Luz Lastres
Relative atomic mass can be a confusing concept for students and a source of frustration for instructors. These authors propose an idea called a RAM scale.
Baumgartner, Erwin; Benitez, Carlos; Cirelli, Alicia Fernandez; Flores, Luz Lastres J. Chem. Educ. 1988, 65, 16.
Atomic Properties / Structure |
Periodicity / Periodic Table
Pandemonium pesticide: A simple demonstration illustrating some fundamental chemical concepts  Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D.
Demonstration that uses large, visible particles to simulate calculations of atomic / molecular mass, percentage composition, and molecular formula.
Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D. J. Chem. Educ. 1985, 62, 870.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry |
Chemometrics
IUPAC table of atomic weights to four significant figures  Greenwood, N. N.; Peiser, H. S.
Masses for the first 103 elements scaled so the mass of 12C is exactly 12.
Greenwood, N. N.; Peiser, H. S. J. Chem. Educ. 1985, 62, 744.
Atomic Properties / Structure |
Periodicity / Periodic Table
But if atoms are so tiny...  Kolb, Doris
Reviews the atomic theory, the laws of chemical combination, atomic weight scales, Avogadro's hypothesis, the development of the mass spectrograph, the meaning of atomic weight, and the difference between mass and weight in answering the question "If atoms are so small, how can we know how much they weigh?" [Debut]
Kolb, Doris J. Chem. Educ. 1977, 54, 543.
Atomic Properties / Structure |
Kinetic-Molecular Theory |
Mass Spectrometry
The mole again!  Haack, N. H.
Discusses the definition of the mole.
Haack, N. H. J. Chem. Educ. 1970, 47, 324.
Atomic Properties / Structure |
Stoichiometry |
Nomenclature / Units / Symbols
Behavior of electrons in atoms: Structure, spectra, and photochemistry of atoms (Hochstrasser, Robin M.)  Gregory, N. W.

Gregory, N. W. J. Chem. Educ. 1965, 42, 62.
Atomic Properties / Structure |
Photochemistry |
Spectroscopy |
Quantum Chemistry
Letters to the editor  Foster, Laurence S.
Thanks a reader for pointing out a misstatement in an earlier article involving atomic mass units and avograms.
Foster, Laurence S. J. Chem. Educ. 1956, 33, 477.
Nomenclature / Units / Symbols |
Atomic Properties / Structure
Letters to the editor  Mayper, Stuart A.
Points out a misstatement in an earlier article involving atomic mass units and avograms.
Mayper, Stuart A. J. Chem. Educ. 1956, 33, 477.
Nomenclature / Units / Symbols |
Atomic Properties / Structure