TIGER

Journal Articles: 9 results
Predicting the Stability of Hypervalent Molecules  Tracy A. Mitchell, Debbie Finocchio, and Jeremy Kua
In this exercise, students use concepts in thermochemistry such as bond energy, ionization potentials, and electron affinities to predict the relative stability of two hypervalent molecules (PF5 and PH5) relative to their respective non-hypervalent counterparts.
Mitchell, Tracy A.; Finocchio, Debbie; Kua, Jeremy. J. Chem. Educ. 2007, 84, 629.
Computational Chemistry |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Molecular Modeling |
Calorimetry / Thermochemistry |
Molecular Properties / Structure
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
The Lead-Acid Battery: Its Voltage in Theory and in Practice  Richard S. Treptow
Lead-acid battery fundamentals, cell voltage and the Nernst equation, and an analysis of actual battery performance.
Treptow, Richard S. J. Chem. Educ. 2002, 79, 334.
Electrochemistry |
Oxidation / Reduction |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases |
Applications of Chemistry
Illustrating Thermodynamic Concepts Using a Hero's Engine  Pedro L. Muiño and James R. Hodgson
A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion, conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.
Muio, Pedro L.; Hodgson, James R. J. Chem. Educ. 2000, 77, 615.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
An alternate use of dilithium crystals   Lang, Frank T.
A Star Trek example of a mass-to-energy conversion important in nuclear reactions.
Lang, Frank T. J. Chem. Educ. 1990, 67, 277.
Nuclear / Radiochemistry |
Calorimetry / Thermochemistry
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Bioenergetics
Brief introduction to the three laws of thermodynamics  Stevenson, Kenneth L.
Brief descriptions of the three laws of thermodynamics.
Stevenson, Kenneth L. J. Chem. Educ. 1975, 52, 330.
Thermodynamics
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Thermodynamics