TIGER

Journal Articles: 38 results
Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number  Derek W. Smith
It is argued that the terms valence, covalence, hypervalence, oxidation state, and coordination number are often confused and misused in the literature. It is recommended that use of the term valence, and its associated terminology, should be restricted to simple molecular main group substances and to some oxoacids and derivatives, but avoided in both main group and transition element coordination chemistry.
Smith, Derek W. J. Chem. Educ. 2005, 82, 1202.
Coordination Compounds |
Covalent Bonding |
Main-Group Elements |
Oxidation State
Electronegativity and the Bond Triangle  Terry L. Meek and Leah D. Garner
The dependence of bond type on two parameters, electronegativity difference (??) and average electronegativity (?av), is examined. It is demonstrated that ionic character is governed by the partial charges of the bonded atoms, and metallic character by the HOMO¬ĚLUMO band gap.
Meek, Terry L.; Garner, Leah D. J. Chem. Educ. 2005, 82, 325.
Atomic Properties / Structure |
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Main-Group Elements
Teaching Molecular Geometry with the VSEPR Model  Ronald J. Gillespie
The difficulties associated with the usual treatment of the VB and MO theories in connection with molecular geometry in beginning courses are discussed. It is recommended that the VB and MO theories should be presented only after the VSEPR model either in the general chemistry course or in a following course, particularly in the case of the MO theory, which is not really necessary for the first-year course.
Gillespie, Ronald J. J. Chem. Educ. 2004, 81, 298.
Covalent Bonding |
Molecular Properties / Structure |
Main-Group Elements |
Theoretical Chemistry |
VSEPR Theory |
MO Theory
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
Writing Electron Dot Structures   Kenneth R. Magnell
Drill with feedback for students learning to write electron dot structures.
Magnell, Kenneth R. J. Chem. Educ. 2003, 80, 711.
Covalent Bonding |
Lewis Structures |
Resonance Theory |
Enrichment / Review Materials
An Investigation of the Value of Using Concept Maps in General Chemistry  Gayle Nicoll, Joseph S. Francisco, and Mary B. Nakhleh
Study of the degree to which students in introductory chemistry classes linked related concepts; comparisons of a class in which concept mapping was used and another in which it was not.
Nicoll, Gayle; Francisco, Joseph S.; Nakhleh, Mary B. J. Chem. Educ. 2001, 78, 1111.
Covalent Bonding |
Learning Theories
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Lewis Structures of Boron Compounds Involving Multiple Bonding  Straub, Darel K.
Considers evidence for multiple bonding in boron compounds and supposed exceptions to the octet rule.
Straub, Darel K. J. Chem. Educ. 1995, 72, 494.
Lewis Structures |
Covalent Bonding
Bond Energy Data Summarized  Kildahl, Nicholas K.
A periodic table that summarizes a variety of bond energy information.
Kildahl, Nicholas K. J. Chem. Educ. 1995, 72, 423.
Periodicity / Periodic Table |
Covalent Bonding |
Ionic Bonding
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
The chemical bond  DeKock, Roger L.
Overview of the chemical bond; considers ionic bonds, covalent bonds, Lewis electron dot structures, polar molecules and hydrogen bonds, and bonding in solid-state elements.
DeKock, Roger L. J. Chem. Educ. 1987, 64, 934.
Ionic Bonding |
Covalent Bonding |
Hydrogen Bonding |
Solid State Chemistry |
Lewis Structures |
Molecular Properties / Structure
Bent-bond models using framework molecular models  Sund, Eldon H.; Suggs, Mark W.
Using tubing to represent double and triple bonds.
Sund, Eldon H.; Suggs, Mark W. J. Chem. Educ. 1980, 57, 638.
Molecular Modeling |
Alkenes |
Alkynes |
Covalent Bonding
Bent bonds and multiple bonds  Robinson, Edward A.; Gillespie, Ronald J.
Considers carbon-carbon multiple bonds in terms of the bent bond model first proposed by Pauling in 1931.
Robinson, Edward A.; Gillespie, Ronald J. J. Chem. Educ. 1980, 57, 329.
Covalent Bonding |
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Alkynes
Prospects and retrospects in chemical education  Pauling, Linus
Pauling provides suggestions for what concepts to focus on in an elementary chemistry course.
Pauling, Linus J. Chem. Educ. 1980, 57, 38.
Covalent Bonding |
Descriptive Chemistry |
Molecular Properties / Structure
Electronegativity, bond energy, and chemical reactivity  Myers, R. Thomas
The Pauling electronegativity concept can be used to help rationalize several kinds of chemical reactions.
Myers, R. Thomas J. Chem. Educ. 1979, 56, 711.
Atomic Properties / Structure |
Covalent Bonding |
Reactions
Bond free energies  Amador, Alberto
Provides standard free energies for the formation of common single and multiple bonds.
Amador, Alberto J. Chem. Educ. 1979, 56, 453.
Covalent Bonding |
Thermodynamics
Chemical origins of color  Orna, Mary Virginia
Color is one of the few disciplines that cuts across the boundaries of art, biology, physics, psychology, chemistry, geology, mineralogy, and many other fields. There is hardly an object or a substance in nature that is not colored and virtually every commercially marketed item today is either deliberately colored or de-colored.
Orna, Mary Virginia J. Chem. Educ. 1978, 55, 478.
Descriptive Chemistry |
Physical Properties
Hybrid orbitals in molecular orbital theory  Cohen, Irwin; Del Bene, Janet
Reviews, for the nonspecialist, the basis of hybrid orbitals in terms of molecular orbital theory, to show how the chemical bond is most closely approximated in orbital theory, and to present some new orbital diagrams.
Cohen, Irwin; Del Bene, Janet J. Chem. Educ. 1969, 46, 487.
MO Theory |
Transition Elements
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Bond energies in the interpretation of descriptive chemistry  Howald, Reed A.
Most of the discrepancy between bond energies and bond dissociation energies is eliminated by the inclusion of pi bonding effects and using bond energies referred to as hypothetical "valence state" atoms in those cases where spin pairing provides substantial stabilization for the free atom.
Howald, Reed A. J. Chem. Educ. 1968, 45, 163.
Descriptive Chemistry |
Covalent Bonding
IV - Isoelectronic systems  Bent, Henry A.
A detailed consideration of the principles of isoelectric systems.
Bent, Henry A. J. Chem. Educ. 1966, 43, 170.
Gases |
Nonmetals |
Covalent Bonding
III - Bond energies  Benson, Sidney W.
Examines bond dissociation energies , methods for measuring such energies, some representative values of such energies, structural aspects of bond dissociation energies, and bond energies in ionized species.
Benson, Sidney W. J. Chem. Educ. 1965, 42, 502.
Covalent Bonding
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Relationship of exothermicities of compounds to chemical bonding  Siegel, Bernard
The sign and magnitude of the standard heat of formation of a chemical compound is often used incorrectly to characterize its relative stability compared to other compounds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 308.
Calorimetry / Thermochemistry |
Covalent Bonding
The valence-shell electron-pair repulsion (VSEPR) theory of directed valency  Gillespie, R. J.
Presents the valence-shell electron-pair repulsion (VSEPR) theory of directed valency and its use to determine molecular shapes, bond angles, and bond lengths.
Gillespie, R. J. J. Chem. Educ. 1963, 40, 295.
VSEPR Theory |
Molecular Properties / Structure |
Covalent Bonding
Non-existent compounds  Dasent, W. E.
The purpose of this review is to examine compounds that do not violate the rules of valence but which are nevertheless characterized by a high degree of instability, and to consider why these structures are unstable or non-existent.
Dasent, W. E. J. Chem. Educ. 1963, 40, 130.
Molecular Properties / Structure |
Covalent Bonding
Vibrating molecular models: Frequency shifts in strained ring double bonds  Colthup, Norman B.
Describes the study of the general effect of double bond-single bond interaction using vibrating molecular models.
Colthup, Norman B. J. Chem. Educ. 1961, 38, 394.
Molecular Modeling |
Covalent Bonding
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Dynamic projector display for atomic orbitals and the covalent bond  Thompson, H. Bradford
An overhead projector is used to display the combination of simple atomic orbitals to form hybrid and molecular orbitals.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 118.
Atomic Properties / Structure |
Covalent Bonding
Lone pair electrons  Fowles, Gerald W. A.
The lone pair electrons, whether in simple or hybrid orbitals, have profound effects on the properties of the molecule; these effects may be discussed as bond angles, dipole moments, bond energies and lengths, and coordination and hydrogen bonding.
Fowles, Gerald W. A. J. Chem. Educ. 1957, 34, 187.
Atomic Properties / Structure |
Covalent Bonding |
Coordination Compounds |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
The evolution of valence theory and bond symbolism  Mackle, Henry
Traces the historic evolution of valence theory and bond symbolism, including numerical aspects of chemical bonding, the mechanism of chemical bonding and its origins, chemical bonding in organic compounds, stereochemical aspects of chemical bonding, residual valence of unsaturated compounds, and electronic theories of valence.
Mackle, Henry J. Chem. Educ. 1954, 31, 618.
Covalent Bonding
An unconventional representation of multiple bonds  Gillis, Richard G.; Nelson, Peter F.
There are several advantages to differentiating between sigma and pi electrons in representing multiple bonds.
Gillis, Richard G.; Nelson, Peter F. J. Chem. Educ. 1954, 31, 546.
Covalent Bonding