TIGER

Journal Articles: 18 results
Peer-Developed and Peer-Led Labs in General Chemistry  Lorena Tribe and Kim Kostka
Describes a student-developed and led laboratory curriculum as a model for producing a more student-centered and rich laboratory experience in general chemistry laboratories.
Tribe, Lorena; Kostka, Kim. J. Chem. Educ. 2007, 84, 1031.
Acids / Bases |
Electrochemistry |
Equilibrium |
Kinetics |
Laboratory Management |
Thermodynamics |
Student-Centered Learning
Procedure for Decomposing a Redox Reaction into Half-Reactions  Ilie Fishtik and Ladislav H. Berka
The principle of stoichiometric uniqueness provides a simple algorithm to check whether a simple redox reaction may be uniquely decomposed into half-reactions in a single way. For complex redox reactions the approach permits a complete enumeration of a finite and unique number of ways a redox reaction may be decomposed into half-reactions. Several examples are given.
Fishtik, Ilie; Berka, Ladislav H. J. Chem. Educ. 2005, 82, 553.
Stoichiometry |
Equilibrium |
Electrochemistry |
Oxidation / Reduction |
Reactions |
Thermodynamics
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics  Bryce E. Williamson and Tetsuo Morikawa
Presentation of a chemically relevant model that exemplifies many aspects of the second law: reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry.
Williamson, Bryce E.; Morikawa, Tetsuo. J. Chem. Educ. 2002, 79, 339.
Calorimetry / Thermochemistry |
Electrochemistry |
Thermodynamics
The Lead-Acid Battery: Its Voltage in Theory and in Practice  Richard S. Treptow
Lead-acid battery fundamentals, cell voltage and the Nernst equation, and an analysis of actual battery performance.
Treptow, Richard S. J. Chem. Educ. 2002, 79, 334.
Electrochemistry |
Oxidation / Reduction |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases |
Applications of Chemistry
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
Chemistry Comes Alive! Vol. 3: Abstract of Special Issue 23 on CD-ROM  Jerrold J. Jacobsen and John W. Moore
Volume 3 contains several related topics generally included in an introductory chemistry course. The general areas are Enthalpy and Thermodynamics, Oxidation-Reduction, and Electrochemistry.
Jacobsen, Jerrold J.; Moore, John W. J. Chem. Educ. 1999, 76, 1311.
Calorimetry / Thermochemistry |
Thermodynamics |
Oxidation / Reduction |
Electrochemistry
Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom!  Todd P. Silverstein and Yi Zhang
Our demonstration uses no sulfuric acid, yields relatively little smoke, and produces an exciting and unpredictable growing column of black carbon.
Silverstein, Todd P.; Zhang, Yi. J. Chem. Educ. 1998, 75, 748.
Carbohydrates |
Thermodynamics |
Electrochemistry |
Solid State Chemistry |
Oxidation / Reduction
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
SIRS: Simulations and Interactive Resources, III  Martin, John S.
Simulations and Interactive Resources (SIRs) are designed to support interactive lectures in introductory chemistry. This third issue of SIRs includes five new SIRs as well as updated and final versions of all previously published SIRs.
Martin, John S. J. Chem. Educ. 1996, 73, 722.
Periodicity / Periodic Table |
Equilibrium |
Gases |
Thermodynamics |
Reactions |
Electrochemistry |
Kinetics
Photosynthesis: Why Does It Occur?  J. J. MacDonald
Explanation of why photosynthesis occurs; stating that it is merely the reverse of respiration is misleading.
MacDonald, J. J. J. Chem. Educ. 1995, 72, 1113.
Plant Chemistry |
Reactions |
Thermodynamics |
Photochemistry |
Electrochemistry
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
An effective approach to teaching electrochemistry  Birss, Viola I.; Truax, D. Rodney
By interweaving concepts from thermodynamics and chemical kinetics with those of electrochemical measurement, the authors provide students with an enriched appreciation of the utility of ideas from kinetics and thermodynamics.
Birss, Viola I.; Truax, D. Rodney J. Chem. Educ. 1990, 67, 403.
Electrochemistry |
Kinetics |
Thermodynamics
Corrosion: A Waste of energy  J. Chem. Educ. Staff
Thermodynamics and electrochemical aspects of corrosion, and inhibition of the corrosion process.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 673.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Thermodynamics |
Electrochemistry
A simple lab demonstrating energy transformation  Miller, Daniel W.
Building and investigating a sulfuric acid / lead electrolytic cell.
Miller, Daniel W. J. Chem. Educ. 1977, 54, 245.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Thermodynamics
Definition of standard states  Lukens, David C.
A suggested sequence of definitions for the standard state.
Lukens, David C. J. Chem. Educ. 1972, 49, 654.
Thermodynamics |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Solutions / Solvents
Miscellanea No. 6  Eberhardt, W. H.
A collection of clarified, underemphasized, and misunderstood topics, including cell electromotive force and disproportionate reactions; partially miscible liquids and upper consolute temperatures; enthalpy and free energy of formation; and magnetic moment.
Eberhardt, W. H. J. Chem. Educ. 1971, 48, 829.
Electrochemistry |
Solutions / Solvents |
Thermodynamics |
Magnetic Properties