TIGER

Journal Articles: 48 results
Redox Titration of Ferricyanide to Ferrocyanide with Ascorbic Acid: Illustrating the Nernst Equation and Beer–Lambert Law  Tina H. Huang, Gail Salter, Sarah L. Kahn, and Yvonne M. Gindt
In this simple experiment, which illustrates the Nernst equation and BeerLambert law, students monitor the reduction of ferricyanide ion to ferrocyanide electrochemically and spectrophoto-metrically upon titration with ascorbic acid. The Nernst equation is used to calculate the standard reduction potential of the redox couple at pH 7 and the number of electrons transferred.
Huang, Tina H.; Salter, Gail; Kahn, Sarah L.; Gindt, Yvonne M. J. Chem. Educ. 2007, 84, 1461.
Coordination Compounds |
Electrochemistry |
Potentiometry |
Spectroscopy |
UV-Vis Spectroscopy
Textbook Error: Short Circuiting an Electrochemical Cell  Judith M. Bonicamp and Roy W. Clark
Reports a serious error in the electrochemical diagrams in eight, 21st century texts and offers an analogy to electrical potential energy and a diagram to clarify the interrelationships between electromotive force E, reaction quotient Q, and Gibbs free energy G.
Bonicamp, Judith M.; Clark, Roy W. J. Chem. Educ. 2007, 84, 731.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Small-Scale and Low-Cost Electrodes for "Standard" Reduction Potential Measurements  Per-Odd Eggen, Lise Kvittingen, and Truls Grønneberg
This article describes how to construct three simple and inexpensive, microchemistry electrodes: hydrogen, chlorine, and copper.
Eggen, Per-Odd; Grønneberg, Truls; Kvittingen, Lise. J. Chem. Educ. 2007, 84, 671.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Microscale Lab |
Student-Centered Learning
A Lemon Cell Battery for High-Power Applications  Kenneth R. Muske, Christopher W. Nigh, and Randy D. Weinstein
This article discusses the development of a lemon cell battery for high-power applications such as radios, portable cassette or CD players, and battery-powered toys.
Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D. J. Chem. Educ. 2007, 84, 635.
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Palm-Based Data Acquisition Solutions for the Undergraduate Chemistry Laboratory  Susan Hudgins, Yu Qin, Eric Bakker, and Curtis Shannon
Handheld computers provide a compact and cost-effective means to log data in the undergraduate chemistry laboratory. Handheld computers have the ability to record multiple forms of data, be programmed for specific projects, and later have data transferred to a personal computer for manipulation and analysis.
Hudgins, Susan; Qin, Yu; Bakker, Eric; Shannon, Curtis. J. Chem. Educ. 2003, 80, 1303.
Acids / Bases |
Electrochemistry |
Instrumental Methods |
Laboratory Computing / Interfacing |
Laboratory Equipment / Apparatus
Lithium Batteries: A Practical Application of Chemical Principles  Richard S. Treptow
In recent years batteries have emerged in the marketplace that take advantage of the unique properties of lithium. Lithium metal is an attractive choice to serve as a battery anode because it is easily oxidized and it produces an exceptionally high amount of electrical charge per unit-weight.
Treptow, Richard S. J. Chem. Educ. 2003, 80, 1015.
Consumer Chemistry |
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Lithium Batteries: A Practical Application of Chemical Principles  Richard S. Treptow
In recent years batteries have emerged in the marketplace that take advantage of the unique properties of lithium. Lithium metal is an attractive choice to serve as a battery anode because it is easily oxidized and it produces an exceptionally high amount of electrical charge per unit-weight.
Treptow, Richard S. J. Chem. Educ. 2003, 80, 1015.
Consumer Chemistry |
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Simple Recipes for Prebiotic Soup: A High School or Undergraduate Chemistry Laboratory  Marisol Martinez-Meeler, Nika Aljinovic, and Dorothy Swain
Replicating Stanley Miller's prebiotic soup experiment for introductory chemistry; includes experimental apparatus and analysis of the products.
Martinez-Meeler, Marisol; Aljinovic, Nika; Swain, Dorothy. J. Chem. Educ. 2003, 80, 665.
Amino Acids |
Aqueous Solution Chemistry |
Chromatography |
Electrochemistry |
Proteins / Peptides |
Synthesis |
Applications of Chemistry
A Direct Methanol Fuel Cell  Orfeo Zerbinati
Materials and methods for construction of a direct methanol fuel cell.
Zerbinati, Orfeo. J. Chem. Educ. 2002, 79, 829.
Electrochemistry |
Laboratory Equipment / Apparatus |
Electrolytic / Galvanic Cells / Potentials
Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells  Ali Riza Özkaya
Study of prospective teachers' conceptual understanding of topics in electrochemistry.
Özkaya, Ali Riza. J. Chem. Educ. 2002, 79, 735.
Electrochemistry |
Equilibrium |
Electrolytic / Galvanic Cells / Potentials
Observations on Lemon Cells  Jerry Goodisman
The lemon cell, consisting of pieces of two different metals stuck into a lemon or other fruit, is pictured in many general chemistry textbooks without being discussed; manuscript describes simple experiments, suitable for the general chemistry laboratory, which elucidate how this kind of cell works.
Goodisman, Jerry. J. Chem. Educ. 2001, 78, 516.
Electrochemistry |
Metals |
Electrolytic / Galvanic Cells / Potentials
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
The Nernst Equation: Determination of Equilibrium Constants for Complex Ions of Silver  Martin L. Thompson and Laura J. Kateley
The experiment requires a voltmeter capable of recording millivolts (or a good pH meter) and inexpensive chemicals. It allows students to check the validity of the Nernst equation and compare their experimental Kform values to reported ones.
Thompson, Martin L.; Kateley, Laura J. J. Chem. Educ. 1999, 76, 95.
Equilibrium |
Coordination Compounds |
Electrochemistry |
Oxidation / Reduction
Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter  Greg P. Smestad and Michael Gratzel
A unique solar cell fabrication procedure has been developed using natural anthocyanin dyes extracted from berries. It can be reproduced with a minimum amount of resources in order to provide an interdisciplinary approach for lower-division undergraduate students learning the basic principles of biological extraction, physical chemistry, and spectroscopy as well as environmental science and electron transfer.
Smestad, Greg P.; Grtzel, Michael. J. Chem. Educ. 1998, 75, 752.
Photochemistry |
Plant Chemistry |
Electrochemistry |
Atomic Properties / Structure |
Dyes / Pigments |
Nanotechnology |
Separation Science |
Spectroscopy
The Chemical and Educational Appeal of the Orange Juice Clock  Paul B. Kelter, James D. Carr, Tanya Johnson, and Carlos Mauricio Castro-Acuña
The Orange Juice Clock, in which a galvanic cell is made from the combination of a magnesium strip, a copper strip, and juice in a beaker, has been a popular classroom, conference, and workshop demonstration for nearly 10 years. The discussion that follows considers the recent history, chemistry, and educational uses of the demonstration.
Kelter, Paul B.; Carr, James D.; Johnson, Tanya; Castro-Acuña, Carlos Mauricio. J. Chem. Educ. 1996, 73, 1123.
Electrochemistry
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
The "Golden Penny" Demonstration: An Explanation of the Old Experiment and the Rational Design of the New and Simpler Demonstration.  Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz
An explanation and simpler/safer design for the classical "gold penny" demonstration.
Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz J. Chem. Educ. 1995, 72, 386.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Use of Electrochemical Concentration Cells to Demonstrate the Dimeric Nature of Mercury(I) in Aqueous Media  Bhattacharya, Deepta; Peters, Dennis G.
Experimental procedure for demonstrating that divalent mercury is monovalent in aqueous solution; includes data and analysis.
Bhattacharya, Deepta; Peters, Dennis G. J. Chem. Educ. 1995, 72, 64.
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Determination of Ionic Mobilities by Thin-Layer Electrodeposition   Kuhn, Alexander; Argoul, Francoise
The authors describe a new method for the determination of ionic mobilities. An advantage of the measurement described is that it allows its demonstration within the framework of the student's practical training in ionic conductivity.
Kuhn, Alexander; Argoul, Francoise J. Chem. Educ. 1994, 71, A273.
Electrochemistry |
Ion Selective Electrodes |
Metals
The electrician's multimeter in the chemistry teaching laboratory: Part 2: Potentiometry and conductimetry  Sevilla, Fortunato, III; Alfonso, Rafael L.; Andres, Roberto T.
Further applications of the multimeter in chemistry laboratories are discussed in this paper: potentiometry, reduction potentials and cell EMF, the Nerst equations, pH measurements, titration, conductimetry, and conduction of solutions.
Sevilla, Fortunato, III; Alfonso, Rafael L.; Andres, Roberto T. J. Chem. Educ. 1993, 70, 580.
Acids / Bases |
Solutions / Solvents |
Titration / Volumetric Analysis |
Electrochemistry |
Laboratory Equipment / Apparatus |
Potentiometry
The world's largest human salt bridge  Silverman, L. Phillip; Bunn, Barbara B.
On a beautiful April afternoon, the 1500 students had fun and learned something about electrochemistry, and they helped set a world's record for the "Longest Human Salt Bridge".
Silverman, L. Phillip; Bunn, Barbara B. J. Chem. Educ. 1992, 69, 309.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrochemical measurements in general chemistry lab using a student-constructed Ag-AgCl reference electrode  Ahn, M. K.; Reuland, D. J.; Chadd, K. D.
This paper describes a simple method of making a reproducible and durable reference electrode for use by freshmen chemistry students.
Ahn, M. K.; Reuland, D. J.; Chadd, K. D. J. Chem. Educ. 1992, 69, 74.
Electrochemistry |
Laboratory Equipment / Apparatus
Development of a new design for multipurpose meter: "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland
The purpose of this article is to describe the design of a common box that can be turned into a simple voltmeter, a pH meter, or a calorimeter.
Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland J. Chem. Educ. 1990, 67, 507.
Laboratory Equipment / Apparatus |
Electrochemistry |
pH |
Calorimetry / Thermochemistry
An effective approach to teaching electrochemistry  Birss, Viola I.; Truax, D. Rodney
By interweaving concepts from thermodynamics and chemical kinetics with those of electrochemical measurement, the authors provide students with an enriched appreciation of the utility of ideas from kinetics and thermodynamics.
Birss, Viola I.; Truax, D. Rodney J. Chem. Educ. 1990, 67, 403.
Electrochemistry |
Kinetics |
Thermodynamics
The human salt bridge   Scharlin, Pirketta; Battino, Rubin
In this paper the authors describe a simple device designed for use on an overhead projector to illustrate the "human salt bridge".
Scharlin, Pirketta; Battino, Rubin J. Chem. Educ. 1990, 67, 156.
Electrochemistry
Alleviating the common confusion caused by polarity in electrochemistry  Moran, P. J.; Gileadi, E.
The issue of polarity encountered in electrochemistry and relevant to a variety of electrochemical concepts often confuses students and is an unnecessary deterrent to the study of electrochemistry.
Moran, P. J.; Gileadi, E. J. Chem. Educ. 1989, 66, 912.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Using a projecting voltmeter to introduce voltaic cells  Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony
Using a transparent "projecting" voltmeter and assembling a zinc versus copper cell one component at a time allows students to develop a more concrete notion of the nature of a voltaic cell and the potential it produces.
Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony J. Chem. Educ. 1989, 66, 510.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen-oxygen fuel cell  Roffia, Sergio; Concialini, Vittorio; Paradisi, Carmen
Presentation of a simple apparatus that allows an instructor to perform the electrolysis of water and the back conversion of the products to water while overcoming some typical drawbacks encountered in this process.
Roffia, Sergio; Concialini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 725.
Water / Water Chemistry |
Electrochemistry
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen oxygen fuel cell  Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen
The authors discuss some common drawbacks to typical electrolysis demonstrations and present an apparatus that overcomes these drawbacks.
Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 272.
Laboratory Equipment / Apparatus |
Stoichiometry |
Electrochemistry
Outmoded terminology: The normal hydrogen electrode  Ramette, R. W.
As educators, we should not confuse the "normal hydrogen electrode" with the "standard hydrogen electrode".
Ramette, R. W. J. Chem. Educ. 1987, 64, 885.
Electrochemistry |
Nomenclature / Units / Symbols
Using NASA and the space program to help high school and college students learn chemistry. Part II. The current state of chemistry in the space program  Kelter, Paul B.; Snyder, William E.; Buchar, Constance S.
Examples and classroom applications in the areas of spectroscopy, materials processing, and electrochemistry.
Kelter, Paul B.; Snyder, William E.; Buchar, Constance S. J. Chem. Educ. 1987, 64, 228.
Astrochemistry |
Spectroscopy |
Materials Science |
Electrochemistry |
Crystals / Crystallography
Estimating the one electron reduction potential for vanadium (V) by chemical techniques: An experiment for general chemistry  Wentworth, R. A. D.
Procedure requires no electrochemical equipment because the method depends solely upon observations of the spontaneity of the reactions of V(V) with a series of potential reducing agents and V(IV) with a series of potential oxidizing agents.
Wentworth, R. A. D. J. Chem. Educ. 1985, 62, 440.
Oxidation State |
Oxidation / Reduction |
Electrochemistry
Photoelectrochemical solar cells  McDevitt, John T.
An introduction to photoelectrochemical cells and topics pertaining to solar energy conversion.
McDevitt, John T. J. Chem. Educ. 1984, 61, 217.
Photochemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Semiconductors |
Applications of Chemistry
Understanding electrochemistry: Some distinctive concepts  Faulkner, Larry R.
This article addresses a few basic ideas about electrochemical systems that cause confusion among novice students. From State-of-the-Art Symposium: Electrochemistry, ACS meeting, Kansas City, 1982.
Faulkner, Larry R. J. Chem. Educ. 1983, 60, 262.
Electrochemistry
Corrosion: A Waste of energy  J. Chem. Educ. Staff
Thermodynamics and electrochemical aspects of corrosion, and inhibition of the corrosion process.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 673.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Thermodynamics |
Electrochemistry
Electrochemical demonstration: Motor driven by a simple galvanic cell  Skinner, J. F.
A Zn / Zn 2+ Cu 2+ / Cu (Daniel) cell operates a small motor.
Skinner, J. F. J. Chem. Educ. 1977, 54, 619.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Corrosion  Slabaugh, W. H.
The topic of corrosion extends several basic concepts of electrochemistry with which students can relate. This article outlines: standard electrochemical potentials; corrosion of iron' corrosion of aluminum; application of electrochemical concepts; and ideas for some experiments.
Slabaugh, W. H. J. Chem. Educ. 1974, 51, 218.
Oxidation / Reduction |
Consumer Chemistry |
Electrochemistry
Racing car batteries  Plumb, Robert C.; Combs, R. E.; Connelly, J. M.
Illustrating the Nernst equation and Faraday's laws using the example of the silver-zinc batteries used in racing cars.
Plumb, Robert C.; Combs, R. E.; Connelly, J. M. J. Chem. Educ. 1973, 50, 857.
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Edison's chemical meter  Vanderbilt, Byron M.
Thomas Edison invented the chemical meter to measure the rate at which electricity was being used.
Vanderbilt, Byron M. J. Chem. Educ. 1972, 49, 626.
Applications of Chemistry |
Electrochemistry
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Transistorized power sources for constant current coulometric titration  Stock, John T.
This coulometric titrator uses a complementary pair of transistors to minimize heating affects and improve stability with respect to temperature; an example of experimental use for the apparatus is included.
Stock, John T. J. Chem. Educ. 1969, 46, 858.
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Quantitative Analysis |
Instrumental Methods |
Electrochemistry
A simple amperostat for coulometric titration  Vincent, Colin A.; Ward, J. G.
Describes the circuit, assembly, and performance of a simple amperostat for coulometric titration.
Vincent, Colin A.; Ward, J. G. J. Chem. Educ. 1969, 46, 613.
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis |
Quantitative Analysis |
Oxidation / Reduction |
Electrochemistry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) How can half-reactions be added to determine potentials? (2) What is the approximate size and weight of uranium-235 necessary for a chain reaction to occur? (3) What is the distinction between an inhibitor and a negative catalyst?
Young, J. A.; Malik, J. G. J. Chem. Educ. 1968, 45, 477.
Electrochemistry |
Nuclear / Radiochemistry |
Catalysis
Electro-osmosis as a demonstration experiment. Coupled irreversible effects and direct energy conversion  Dixon, John R.; Schafer, Frank W.
When a stream of water is forced through a porous pug or other resistance associated with a pressure drop, an electrical potential is developed between the high and low pressure sides of the resistance.
Dixon, John R.; Schafer, Frank W. J. Chem. Educ. 1966, 43, 380.
Electrochemistry
Several designs for constructing potentiometers  Battino, Rubin
This paper describes several designs for constructing inexpensive potentiometers that possess a practical degree of precision.
Battino, Rubin J. Chem. Educ. 1965, 42, 211.
Electrochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Potentiometric measurements of equilibria: In general chemistry laboratory  Chesick, J. P.; Patterson, Andrew, Jr.
The authors describe an experiment in which the solubility product of silver chloride, the ionization constant of the silver-ammonia complex, and the ionization constant of acetic acid can be determined with one afternoon of work.
Chesick, J. P.; Patterson, Andrew, Jr. J. Chem. Educ. 1959, 36, 496.
Electrochemistry |
Equilibrium |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Acids / Bases
Some electrochemical experiments for freshmen  Gorman, Mel
The purpose of this discussion is to present an exercise for freshman laboratory work involving electrochemical unknowns and special electrode potential projects not usually studied in the first-year course.
Gorman, Mel J. Chem. Educ. 1957, 34, 409.
Electrochemistry |
Qualitative Analysis