TIGER

Journal Articles: 39 results
A Bright Spark: Open Teaching of Science Using Faraday's Lectures on Candles  Mark Walker, Martin Gröger, Kirsten Schlüter, and Bernd Mosler
Faraday's famous lecture series, "The Natural History of the Candle," has been adapted for use in a student-centered setting, where students decide the meaning of what they see and do.
Walker, Mark; Gröger, Martin; Schlüter, Kirsten; Mosler, Bernd. J. Chem. Educ. 2008, 85, 59.
Alkanes / Cycloalkanes |
Learning Theories |
Constructivism |
Student-Centered Learning
Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories  Melissa P. Prado, Annie Pham, Robert E. Ferazzi, Kimberly Edwards, and Kenneth C. Janda
Presents a procedure for preparing and studying propane clathrate hydrate. This experiment introduces students to this unusual solid while stimulating a discussion of the interplay of intermolecular forces, thermodynamics, and solid structure.
Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C. J. Chem. Educ. 2007, 84, 1790.
Alkanes / Cycloalkanes |
Applications of Chemistry |
Calorimetry / Thermochemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry |
Hydrogen Bonding
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
Sudoku Puzzles for First-Year Organic Chemistry Students  Alice L. Perez and G. Lamoureux
Sudoku puzzles are used to help the students learn the correspondence between the names of amino acids, their abbreviations, and codes; and the correspondence between the names of functional groups, their structures, and abbreviations.
Perez, Alice L.; Lamoureux, G. J. Chem. Educ. 2007, 84, 614.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkylation |
Amines / Ammonium Compounds |
Amino Acids |
MO Theory |
Nomenclature / Units / Symbols |
Student-Centered Learning |
Alkynes |
Amides
Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Thermal Properties of Organic Hydrocarbons  Ronald DAmelia, Thomas Franks, and William F. Nirode
Differential scanning calorimetry (DSC) is a rugged, easy-to-use instrumental method for thermal analysis determinations. The work described herein discusses the use of DSC in a general chemistry laboratory course to determine thermal properties such as melting points, ?fusionH, ?fusionS, and introduce the concept of polymorphism for organic hydrocarbons.
DAmelia, Ronald; Franks, Thomas; Nirode, William F. J. Chem. Educ. 2007, 84, 453.
Alkanes / Cycloalkanes |
Instrumental Methods |
Physical Properties |
Thermal Analysis |
Thermodynamics |
Calorimetry / Thermochemistry
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Octachem Model: Organic Chemistry Nomenclature Companion  Joaquin Palacios
The Octachem model is an educational physical model designed to guide students in the identification, classification, and naming of the chemical structures of organic compounds. In this article the basic concepts of Octachem model are presented, and the physical model and contents are described.
Palacios, Joaquin. J. Chem. Educ. 2006, 83, 890.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amines / Ammonium Compounds |
Esters |
Ethers |
Nomenclature / Units / Symbols
Further Analysis of Boiling Points of Small Molecules, CHwFxClyBrz  Guy Beauchamp
Multiple linear regression analysis has proven useful in selecting predictor variables that could significantly clarify the boiling point variation of the CHwFxClyBrz molecules.
Beauchamp, Guy. J. Chem. Educ. 2005, 82, 1842.
Chemometrics |
Physical Properties |
Hydrogen Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
A Methane Balloon Inflation Chamber  Curtis J. Czerwinski and Tanya J. Cordes
While several lecture demonstrations are possible using methane-filled balloons, it is often inconvenient to prepare these balloons since the pressure from standard laboratory and lecture hall gas nozzles is too low. As a solution to this problem, a methane balloon inflation chamber, prepared from a translucent 3.5-gallon pail and an aspirator or house-vacuum, provides an inexpensive and convenient method for inflating balloons in laboratories or lecture halls. Prepared in this way, methane-filled balloons can be used to demonstrate the effects of vacuum, the lifting power of low-density gases, and the explosive combustion of methane.
Czerwinski, Curtis J.; Cordes, Tanya J. J. Chem. Educ. 2005, 82, 248.
Alkanes / Cycloalkanes |
Calorimetry / Thermochemistry |
Gases |
Oxidation / Reduction |
Reactions
A Set of Hands-On Exercises on Conformational Analysis  Silvina C. Pellegrinet and Ernesto G. Mata
This article describes a set of comprehensive exercises on conformational analysis that employs a hands-on approach by the use of molecular modeling kits. In addition, the exercises provide illustrations of other topics such as nomenclature, functional groups, and isomerism, and introduce some notions of chirality.
Pellegrinet, Silvina C.; Mata, Ernesto G. J. Chem. Educ. 2005, 82, 73.
Alkanes / Cycloalkanes |
Conformational Analysis |
Constitutional Isomers |
Molecular Properties / Structure |
Stereochemistry
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
Further Information on the Hazards of n-Hexane (re J. Chem. Educ. 2001, 78, 587)  Jay A. Young
Consideration of a flammable liquid above its flash point.
Young, Jay A. J. Chem. Educ. 2001, 78, 1593.
Alkanes / Cycloalkanes |
Laboratory Management
Further Information on the Hazards of n-Hexane (re J. Chem. Educ. 2001, 78, 587)  J. C. Jones
Consideration of a flammable liquid above its flash point.
Jones, J. C. J. Chem. Educ. 2001, 78, 1593.
Alkanes / Cycloalkanes |
Laboratory Management
Further Information on the Hazards of n-Hexane (re J. Chem. Educ. 2001, 78, 587)  J. C. Jones
Consideration of a flammable liquid above its flash point.
Jones, J. C. J. Chem. Educ. 2001, 78, 1593.
Alkanes / Cycloalkanes |
Laboratory Management
Correction to Chemical Laboratory Information Profile: n-Hexane (J. Chem. Educ. 2001, 78, 587)  Jay A. Young
Corrected formula for n-hexane.
Young, Jay A. J. Chem. Educ. 2001, 78, 1021.
Alkanes / Cycloalkanes |
Laboratory Management |
Physical Properties
Chemical Laboratory Information Profile: n-Hexane  Jay A. Young
Properties, hazards, and storage requirements for n-hexane.
Young, Jay A. J. Chem. Educ. 2001, 78, 587.
Alkanes / Cycloalkanes |
Laboratory Management |
Physical Properties
Intermolecular Forces in Introductory Chemistry Studied by Gas Chromatography, Computer Models, and Viscometry  Jonathan C. Wedvik, Charity McManaman, Janet S. Anderson, and Mary K. Carroll
Students performing gas chromatographic (GC) analyses of mixtures of n-alkanes and samples that simulate crime scene evidence discover that liquid mixtures can be separated rapidly into their components based upon intermolecular forces. Each group of students is given a liquid sample that simulates one collected at an arson scene, and the group is required to determine the identity of the accelerant. Students also examine computer models to better visualize how molecular structure affects intermolecular forces: London forces, dipole-dipole interactions, and hydrogen bonding.
Wedvik, Jonathan C.; McManaman, Charity; Anderson, Janet S.; Carroll, Mary K. J. Chem. Educ. 1998, 75, 885.
Theoretical Chemistry |
Chromatography |
Noncovalent Interactions |
Gas Chromatography |
Molecular Modeling |
Forensic Chemistry |
Alkanes / Cycloalkanes |
Hydrogen Bonding |
Molecular Properties / Structure
Four Programs for Windows: Abstract of Volume 4D, Number 2: Alkanes in Motion  Jae Hyun Kim
Alkanes in Motion depicts the molecular motion of hydrocarbons in the gas phase. Four animations from the collection are presented here. These four animations consist of two animations each of hexane and octadecane, one animation calculated to show translational motion and one to show vibrational motion.
Kim, Jae Hyun. J. Chem. Educ. 1996, 73, 1079.
Molecular Modeling |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Gases
A simple and colorful demonstration of light-catalyzed bromination of an alkane  Stevens, Malcolm P.
Light-catalyzed bromination of an alkane.
Stevens, Malcolm P. J. Chem. Educ. 1992, 69, 1028.
Catalysis |
Alkanes / Cycloalkanes |
Photochemistry |
Reactions
A source of isomer-drawing assignments  Kjonaas, Richard A.
A comprehensive source from which instructors can choose a wide variety of good isomer drawing examples to use as homework assignments and exam questions.
Kjonaas, Richard A. J. Chem. Educ. 1992, 69, 452.
Stereochemistry |
Alcohols |
Alkanes / Cycloalkanes |
Alkenes |
Aldehydes / Ketones |
Ethers |
Esters |
Alkynes
Understanding the fate of petroleum hydrocarbons in the subsurface environment  Chen, Chien T.
This article reviews our current understanding and then specifies the requirements for research that will improve our ability to detect hydrocarbons and predict their fate in the subsurface environment.
Chen, Chien T. J. Chem. Educ. 1992, 69, 357.
Alkanes / Cycloalkanes |
Phases / Phase Transitions / Diagrams
Organic Nomenclature (Lampman, Gary)  Damey, Richard F.
An interactive tutorial / drill for naming organic compounds.
Damey, Richard F. J. Chem. Educ. 1990, 67, A220.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Ethers |
Alcohols |
Amines / Ammonium Compounds |
Phenols
Reaction of bromine with hydrocarbons on the overhead, real or simulated  Solomon, Sally; Gregory, Michael; Padmanabhan, Sandeep; Smith, Kurt
A simulation that looks like the addition of bromine to hydrocarbons but is not (the bromine is simulated using a mixture of food colorings).
Solomon, Sally; Gregory, Michael; Padmanabhan, Sandeep; Smith, Kurt J. Chem. Educ. 1990, 67, 961.
Alkanes / Cycloalkanes |
Aromatic Compounds |
Addition Reactions
A vapor pressure demonstration   Sears, Jerry A.
The fact that all liquids exert a vapor pressure is an abstract concept that many students have difficulty understanding. The following demonstration offers dramatic, visual evidence of the pressure exerted by the vapor of a liquid.
Sears, Jerry A. J. Chem. Educ. 1990, 67, 427.
Alkanes / Cycloalkanes |
Phases / Phase Transitions / Diagrams |
Liquids
A convenient demonstration of combustion and explosion  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
Demonstrating the correct molar ratio between propane and oxygen.
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1987, 64, 894.
Stoichiometry |
Alkanes / Cycloalkanes |
Oxidation / Reduction
Chemical properties of commonly available hydrocarbons  Perina, Ivo
Studying the properties of saturated hydrocarbons using natural gas.
Perina, Ivo J. Chem. Educ. 1985, 62, 864.
Alkanes / Cycloalkanes
Measuring the atomic or molecular mass of a gas with a tire gauge and a butane lighter fluid can  Bodner, George M.; Magginnis, Lenard J.
Also demonstrating the mass of air and the dependence of the pressure of a gas on the mass of the sample.
Bodner, George M.; Magginnis, Lenard J. J. Chem. Educ. 1985, 62, 434.
Atomic Properties / Structure |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Gases
The "6N+2 Rule" for writing Lewis octet structures  Zandler, Melvin E.; Talaty, Erach R.
Applying the "6N+2 Rule" to writing Lewis octet structures.
Zandler, Melvin E.; Talaty, Erach R. J. Chem. Educ. 1984, 61, 124.
Lewis Structures |
Molecular Properties / Structure
Oil shale - Heir to the petroleum kingdom   Schachter, Y.
A discussion of oil shale provides students with real-world problems that require chemical literacy.
Schachter, Y. J. Chem. Educ. 1983, 60, 750.
Applications of Chemistry |
Alkenes |
Alkanes / Cycloalkanes |
Green Chemistry
Estimating energy outputs of fuels  Baird, N. Colin
Which is the best fuel in terms of heat energy output: coal, natural gas, fuel oil, hydrogen, or alcohol? It is possible to obtain a semi quantitative estimate of the heat generated by combustion of a fuel from the balanced chemical equation alone.
Baird, N. Colin J. Chem. Educ. 1983, 60, 356.
Reactions |
Green Chemistry |
Thermodynamics |
Alcohols |
Alkanes / Cycloalkanes |
Geochemistry |
Stoichiometry |
Quantitative Analysis
Lecture experiment in gas-liquid chromatography with a simple gas chromatograph at room temperature  Wollrah, Adalbert
Apparatus and method for separating mixtures of pentane / hexane and methyl chloride / carbon tetrachloride.
Wollrah, Adalbert J. Chem. Educ. 1982, 59, 1042.
Chromatography |
Separation Science |
Alkanes / Cycloalkanes
Compact Compacts  Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F.
A collection of three suggestions regarding demonstrating the oxidation of hydrocarbons and the primary, secondary, and tertiary structure of proteins and the first law of thermodynamics as applied to air conditioning.
Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F. J. Chem. Educ. 1979, 56, 389.
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Proteins / Peptides |
Thermodynamics
A simple gas chromatograph for teaching purposes  Wollrab, Adalbert
A simple apparatus for demonstrating the separation of a mixture of pentane and hexane gas.
Wollrab, Adalbert J. Chem. Educ. 1975, 52, 200.
Chromatography |
Gas Chromatography |
Laboratory Equipment / Apparatus |
Separation Science |
Alkanes / Cycloalkanes |
Gases
The octane cannon experiment updated for television  Richtol, H. H.; Nelson, D. L.; Reeves, R. R.
Video recording the detonation of octane in a clear tube for frame-by-frame analysis of a rapid reaction.
Richtol, H. H.; Nelson, D. L.; Reeves, R. R. J. Chem. Educ. 1973, 50, 856.
Alkanes / Cycloalkanes |
Reactions |
Oxidation / Reduction
Demonstration of solubility of "immiscible" fluids  Koob, R. D.; Tallman, D. E.
Demonstrating that hexane is miscible in water.
Koob, R. D.; Tallman, D. E. J. Chem. Educ. 1973, 50, 724.
Solutions / Solvents |
Precipitation / Solubility |
Water / Water Chemistry |
Alkanes / Cycloalkanes
Computer program for identifying alkane structures  Davidson, Scott
A Fortran IV computer program to identify and name alkane structure having C1-C16 main chains and C1-C4 side chains is available.
Davidson, Scott J. Chem. Educ. 1973, 50, 707.
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Nomenclature / Units / Symbols
Extensions in the use of plastic tetrahedral models  Fieser, Louis F.
Describes the modification of existing models to provide for the construction of specialized organic and inorganic structures and their use in teaching.
Fieser, Louis F. J. Chem. Educ. 1965, 42, 408.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
A versatile molecular model of cyclobutane  Wilson, Armin
Describes a versatile molecular model of cyclobutane constructed from brass tubing and used to illustrate ring strain.
Wilson, Armin J. Chem. Educ. 1962, 39, 649.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Lecture demonstration models of cycloalkanes  Schultz, Harry P.
Describes large, sturdy, lecture demonstration models of cycloalkanes.
Schultz, Harry P. J. Chem. Educ. 1962, 39, 648.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes