TIGER

Journal Articles: 13 results
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
A bloody nose, the hairdresser's salon, flies in an elevator, and dancing couples: The use of analogies in teaching introductory chemistry  Last, Arthur M.
The use of analogies can play an important role in assisting students in understanding some of the more difficult and/or abstract concepts in introductory chemistry. In addition, analogies can provide an amusing interlude during a lecture and can sometimes help a lecturer to interact with his students. The four analogies presented in this article represent some of the analogies students have found helpful and amusing in recent years.
Last, Arthur M. J. Chem. Educ. 1983, 60, 748.
Molecular Properties / Structure |
Kinetics |
Stoichiometry |
Thermodynamics
The kinetics of photographic development: A general chemistry experiment  Byrd, J. E.; Perona, M. J.
An experiment that uses black and white photographic equipment to illustrate the determination of reaction rate, kinetic order of reactant, and activation energy.
Byrd, J. E.; Perona, M. J. J. Chem. Educ. 1982, 59, 335.
Kinetics |
Applications of Chemistry |
Photochemistry |
Rate Law
Let's get the heck out of here!  White, Alvan D.
A football stadium is used to explain rate-determining steps.
White, Alvan D. J. Chem. Educ. 1981, 58, 645.
Rate Law |
Kinetics
Temperature effect on reaction rates   Eliason, Robert; McMahon, Terence
A demonstration has been developed which nicely illustrates the temperature effect on reaction rates and the general rule relating temperature increases with rate increases.
Eliason, Robert; McMahon, Terence J. Chem. Educ. 1981, 58, 354.
Kinetics |
Reactions
Chemical Kinetics: Reaction Rates  Mickey, Charles D.
Reviews the chemistry behind factors that influence the rates of chemical reactions.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 659.
Rate Law |
Kinetics |
Reactions |
Catalysis
Water dipping kinetics. A physical analog for chemical kinetics  Birk, James P.; Gunter, S. Kay
Physical analogs of zero-, first, and second-order kinetics using the volume of water transferred by a dipper oriented in different directions with respect to a basin of water.
Birk, James P.; Gunter, S. Kay J. Chem. Educ. 1977, 54, 557.
Kinetics |
Equilibrium |
Rate Law
The oxidation of iodide ion by persulfate ion  Moews, P. C., Jr.; Petrucci, R. H.
Presents the oxidation of iodide ion by persulfate ion as an ideal reaction to study as part of an experiment on kinetics.
Moews, P. C., Jr.; Petrucci, R. H. J. Chem. Educ. 1964, 41, 549.
Oxidation / Reduction |
Reactions |
Kinetics |
Rate Law
KineticsEarly and often  Campbell, J. A.
Describes an approach to investigating kinetics and its application to the "blue bottle" experiment.
Campbell, J. A. J. Chem. Educ. 1963, 40, 578.
Kinetics |
Equilibrium |
Mechanisms of Reactions
Some aspects of chemical kinetics for elementary chemistry  Benson, Sidney W.
The author suggests greater efforts to address the issue of kinetics and reaction mechanisms in introductory chemistry.
Benson, Sidney W. J. Chem. Educ. 1962, 39, 321.
Kinetic-Molecular Theory |
Gases |
Kinetics |
Mechanisms of Reactions |
Descriptive Chemistry
A constant temperature reaction vessel for the thermal decomposition of solids  Prout, E. G.; Herley, P. J.
Describes an apparatus suitable for studying the thermal decomposition of potassium permanganate in high vacuum.
Prout, E. G.; Herley, P. J. J. Chem. Educ. 1960, 37, 643.
Laboratory Equipment / Apparatus |
Solids |
Rate Law |
Kinetics
Determination of reaction rates with an A.C. conductivity bridge: A student experiment  Chesick, J. P.; Patterson, A., Jr.
Describes a quantitative experiment in chemical kinetics suitable for advanced freshmen or physical chemistry; it involves a study of the solvolysis of tertiary butyl chloride by means of conductance measurements.
Chesick, J. P.; Patterson, A., Jr. J. Chem. Educ. 1960, 37, 242.
Conductivity |
Kinetics |
Rate Law
The kinetic structure of gases  Slabaugh, W. H.
Describes a model that illustrates the kinetic properties of gases and ii use to demonstrate the effect of temperature changes on the motion of gas particles.
Slabaugh, W. H. J. Chem. Educ. 1953, 30, 68.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams