TIGER

Journal Articles: 17 results
Fog Machines, Vapors, and Phase Diagrams  Ed Vitz
This series of demonstrations elucidate the operation of commercial fog machines using common laboratory materials and can be adapted for elementary through tertiary levels. The formation of fogs is discussed in terms of the phase diagram for water and other chemical principles.
Vitz, Ed. J. Chem. Educ. 2008, 85, 1385.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Water / Water Chemistry
Effects of a Cooperative Learning Strategy on Teaching and Learning Phases of Matter and One-Component Phase Diagrams  Kemal Doymus
Describes a study whose objective was to determine the effects of cooperative learning (using the jigsaw method) on students' achievement in a general chemistry course.
Doymus, Kemal. J. Chem. Educ. 2007, 84, 1857.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams |
Solids
Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories  Melissa P. Prado, Annie Pham, Robert E. Ferazzi, Kimberly Edwards, and Kenneth C. Janda
Presents a procedure for preparing and studying propane clathrate hydrate. This experiment introduces students to this unusual solid while stimulating a discussion of the interplay of intermolecular forces, thermodynamics, and solid structure.
Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C. J. Chem. Educ. 2007, 84, 1790.
Alkanes / Cycloalkanes |
Applications of Chemistry |
Calorimetry / Thermochemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry |
Hydrogen Bonding
Theoretical Insights for Practical Handling of Pressurized Fluids  Alfonso Aranda and María del Prado Rodríguez
Introduces the basic considerations for managing pressurized fluids, mainly liquefied and compressed gases.
Aranda, Alfonso; Rodríguez, María del Prado. J. Chem. Educ. 2006, 83, 93.
Applications of Chemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry Laboratory  Madalena S. C. Dionísio, Hermínio P. Diogo, J. P. S. Farinha, and Joaquim J. Moura-Ramos
In this article we present a laboratory experiment for an undergraduate physical chemistry course. The purpose of this experiment is the study of molecular mobility in a crystal using the technique of dielectric relaxation spectroscopy. The experiment illustrates important physical chemistry concepts. The background of the experimental technique deals with the concepts of orientational and induced polarization and frequency-dependent relative permittivity (or dielectric constant). The kinetic concepts of temperature-dependent relaxation time, activation energy, and activation entropy are involved in the concept of molecular mobility.
Dionísio, Madalena S. C.; Diogo, Hermínio P.; Farinha, J. P. S.; Moura-Ramos, Joaquim J. J. Chem. Educ. 2005, 82, 1355.
Kinetics |
Phases / Phase Transitions / Diagrams |
Solids |
Crystals / Crystallography
Is Salt Melting When It Dissolves in Water?  Alan Goodwin
Analysis of the chemical meaning of the terms melting and dissolving.
Goodwin, Alan. J. Chem. Educ. 2002, 79, 393.
Liquids |
Solids |
Phases / Phase Transitions / Diagrams
A Closer Look at Phase Diagrams for the General Chemistry Course  Stephen A. Gramsch
The information provided by the high-pressure phase diagrams of some simple systems (carbon dioxide, water, hydrogen, and iron) can provide a useful extension to the traditional discussion of phase diagrams in the general chemistry course. At the same time, it can prepare students for a more illuminating presentation of the concept of equilibrium than is possible through the discussion of gas phase, acid-base, and solubility product equilibria alone.
Gramsch, Stephen A. J. Chem. Educ. 2000, 77, 718.
Equilibrium |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Geochemistry
Entropy, Disorder, and Freezing  Brian B. Laird
It is argued that the usual view that entropy is a measure of "disorder" is problematic and that there exist systems at high density, for which packing considerations dominate, where a spatially ordered state has a higher entropy than a disordered one.
Laird, Brian B. J. Chem. Educ. 1999, 76, 1388.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Statistical Mechanics
Teaching Distillation Knowledge: A Video Film about Distillation Bridging a Gap Between Theory and Practice  Martin J. Goedhart, Hanno van Keulen, Theo M. Mulder, Adri H. Verdonk, and Wobbe De Vos
The authors observed that first year students hardly used their knowledge of phase theory in the design and performance of distillations. They therefore developed a video in which they confront students with the boiling properties of liquid mixtures.
Goedhart, Martin J.; van Keulen, Hanno; Mulder, Theo M.; Verdonk, Adri H.; De Vos, Wobbe. J. Chem. Educ. 1998, 75, 378.
Learning Theories |
Phases / Phase Transitions / Diagrams |
Separation Science |
Liquids |
Physical Properties
Experiments of Modern Chemistry: Simultaneous Recording of Multiple Cooling Curves  Ronald A. Bailey, Sudhen B. Desai, Norbert F. Hepfinger, Henry B. Hollinger, Peter S. Locke, Kenneth J. Miller, James J. Deacutis, Donald R. VanSteele
An apparatus for simultaneous recording of six heating/cooling curves of metallic mixtures is described. Data are recorded using computer data acquisition and temperature-time data displayed and printed out for evaluation.
Bailey, Ronald A.; Desai, Sudhen B.; Hepfinger, Norbert F.; Hollinger, Henry B.; Locke, Peter S.; Miller, Kenneth J.; Deacutis, James J.; VanSteele, Donald R. J. Chem. Educ. 1997, 74, 732.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
A Simple Experiment for Demostration of Phase Diagram of Carbon Dioxide   Van T. Lieu
The experiment involves the compression of small pieces of dry ice and carbon dioxide gas mixture in a 1-mL tuberculin syringe with the needle end of the syringe sealed.
J. Chem. Educ. 1996, 73, 837.
Equilibrium |
Phases / Phase Transitions / Diagrams
Journey around a Phase Diagram  Kildahl, Nicholas K.
This paper deals in depth with questions that arise from phase diagrams in an introductory level chemistry course.
Kildahl, Nicholas K. J. Chem. Educ. 1994, 71, 1052.
Phases / Phase Transitions / Diagrams |
Gases |
Liquids
Nickel-Titanium Memory Metal: A "Smart" Material Exhibiting a Solid-State Phase Change and Superelasticity  Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C.
Several simple experiments that illustrate the shape-memory, mechanical, and acoustical properties of Nitinol.
Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C. J. Chem. Educ. 1994, 71, 334.
Solid State Chemistry |
Phases / Phase Transitions / Diagrams |
Materials Science |
Applications of Chemistry
Phase diagrams of one-compound systems: What most textbooks don't say, but should!  Peckham, Gavin D.; McNaught, Ian J.
High school and introductory chemistry texts contain errors and omissions in phase diagrams.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1993, 70, 560.
Phases / Phase Transitions / Diagrams
Phase changes of hexachloroethane  Shavitz, Richard
A demonstration of the sublimation of hexachloroethane.
Shavitz, Richard J. Chem. Educ. 1975, 52, 231.
Phases / Phase Transitions / Diagrams |
Physical Properties
A thermal analysis experiment for introductory chemistry  Haworth, Daniel T.; McGrath, J. D.
This experiment involves the preparation of a tin-lead phase diagram.
Haworth, Daniel T.; McGrath, J. D. J. Chem. Educ. 1964, 41, 372.
Thermal Analysis |
Phases / Phase Transitions / Diagrams
A eutectic experiment for general chemistry laboratory  Wise, John H.; Shillington, James K.; Watt, William J.; Whitaker, R. D.
This eutectic experiment examines the biphenyl-naphthalene system.
Wise, John H.; Shillington, James K.; Watt, William J.; Whitaker, R. D. J. Chem. Educ. 1964, 41, 96.
Physical Properties |
Phases / Phase Transitions / Diagrams