TIGER

Journal Articles: 42 results
Lanthanum (La) and Actinium (Ac) Should Remain in the d-block  Laurence Lavelle
This paper discusses the reasons and implications of placing lanthanum and actinium in the f-block and lutetium and lawrencium in the d-block.
Lavelle, Laurence. J. Chem. Educ. 2008, 85, 1482.
Atomic Properties / Structure |
Inner Transition Elements |
Periodicity / Periodic Table |
Transition Elements
Forecasting Periodic Trends: A Semester-Long Team Exercise for Nonscience Majors  John Tierney
Teams of students in a course for nonscience majors identify trends among the properties of elements in the periodic table, use Excel to plot and produce best-fit equations to describe relationships among those properties, and apply the resulting formulas to predict and justify the properties of missing elements.
Tierney, John. J. Chem. Educ. 2008, 85, 1215.
Atomic Properties / Structure |
Computational Chemistry |
Main-Group Elements |
Nonmetals |
Periodicity / Periodic Table |
Metals |
Student-Centered Learning
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
Are Some Elements More Equal Than Others?  Ronald L. Rich
Presents a new periodic chart with 18 columns but no interruptions of atomic numbers at Lanthanum or Actinum, and no de-emphasis of elements 57-71 or 89-103 by seeming to make footnotes of them. It shows some elements more than once in order to illuminate multiple relationships in chemical behavior.
Rich, Ronald L. J. Chem. Educ. 2005, 82, 1761.
Atomic Properties / Structure |
Descriptive Chemistry |
Inner Transition Elements |
Main-Group Elements |
Nomenclature / Units / Symbols |
Oxidation State |
Periodicity / Periodic Table |
Transition Elements
Trends in Ionization Energy of Transition-Metal Elements  Paul S. Matsumoto
Examines why, as the number of protons increase along a row in the periodic table, the first ionization energies of the transition-metal elements are relatively steady, but that for the main-group elements increases.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 1660.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Transition Elements
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
The Mole, the Periodic Table, and Quantum Numbers: An Introductory Trio  Mali Yin and Raymond S. Ochs
Suggestions for presenting and developing three key ideas in chemistry: the mole, the periodic table, and quantum numbers.
Yin, Mali; Ochs, Raymond S. J. Chem. Educ. 2001, 78, 1345.
Nonmajor Courses |
Periodicity / Periodic Table |
Stoichiometry |
Atomic Properties / Structure
The Genius of Slater's Rules  James L. Reed
With only a few modifications a procedure has been developed that yields the one-electron energies for atoms and ions with a level of detail very well suited for instruction in the structure and properties of atoms. It provides for the computation of very reasonable values for such properties as ionization energies, electron affinities, promotion energies, electronic transitions, and even XPS and ESCA spectra.
Reed, James L. J. Chem. Educ. 1999, 76, 802.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Spectroscopy
Experimental 4s and 3d Energies in Atomic Ground States  James L. Bills
A new definition is given for the effective charge Zf. HF orbital energies e4s and e3d are used in concert with I4s and I3d to answer four questions: Why does the 4s sublevel fill before 3d? Why is ionization easier for 4s than 3d? When 4s23dn has e3d < e4s, why doesn't 4s23dn -> 4s13dn+1? Why are Cr and Cu each 4s13dn+1 instead of 4s23dn?
Bills, James L. J. Chem. Educ. 1998, 75, 589.
Atomic Properties / Structure
Deducing the Shell Model from Ionization Energies and the Use of Models in Introductory Chemistry  Ronald J. Gillespie, Richard S. Moog, and James N. Spencer
A major objection of Rioux and DeKock is the statement in the authors' earlier paper that electron repulsion is responsible for the relative ionization energies of H and He. The commentators work clearly shows that a quantum mechanical treatment of this problem reveals that kinetic energy considerations play a crucial role in these values. However, although their criticism is appropriate in the context of this more sophisticated QM treatment, it does not in any way invalidate the authors original paper, the goal of which was to provide a model, namely the shell model, for the electronic structure of atoms that is consistent with experimental ionization energies.
Gillespie, Ronald J.; Moog, Richard S.; Spencer, James N. J. Chem. Educ. 1998, 75, 539.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Electron Affinities of the Alkaline Earth Metals and the Sign Convention for Electron Affinity  John C. Wheeler
It has been known since 1987, both theoretically and experimentally, that the ion Ca- is stable. It is now certain that Sr-, Ba-, and Ra- are also stable, and accurate values for the electron affinities of Ca-, Sr-, and Ba- have been determined. Recommended values for these electron affinities, in the units commonly employed in introductory texts and with the sign convention used here, are 2.37, 5.03, and 13.95 kJ/mol for Ca, Sr, and Ba, respectively.
Wheeler, John C. J. Chem. Educ. 1997, 74, 123.
Metals |
Atomic Properties / Structure
A Mnemonic Method for Assigning the Electronic Configurations of Atoms  Nerea Iza and Manuel Gil
An algorithm for determining electronic configurations.
Iza, Nerea; Gil, Manuel. J. Chem. Educ. 1995, 72, 1025.
Atomic Properties / Structure |
Periodicity / Periodic Table
The Periodic Table of Atoms: Arranging the Elements by a Different Set of Rules  Treptow, Richard S.
The periodic table found in this paper is based on the properties of free gaseous atoms rather than atoms in a chemical environment.
Treptow, Richard S. J. Chem. Educ. 1994, 71, 1007.
Periodicity / Periodic Table |
Atomic Properties / Structure
The correct interpretation of Hund's rule as applied to "uncoupled states" orbital diagrams  Campbell, Mark L.
The application of Hund's rule by general chemistry students is appropriate as long as Hund's rule is interpreted correctly.
Campbell, Mark L. J. Chem. Educ. 1991, 68, 134.
Atomic Properties / Structure |
Quantum Chemistry
How to get more from ionization energies in the teaching of atomic structure  Mirone, Paolo
A wealth of experimental data could be exploited more extensively and profitably than what is presently done in the teaching of atomic structure.
Mirone, Paolo J. Chem. Educ. 1991, 68, 132.
Atomic Properties / Structure |
Periodicity / Periodic Table
Electron dormitory: Analogue  Morreale, Charles
Analogous reasoning and relating filling a dormitory with people and an atom with electrons.
Morreale, Charles J. Chem. Educ. 1990, 67, 862.
Atomic Properties / Structure
Periodic chart pedagogy  Yoder, Claude H.; Yoder, Carolyn S.
Questions based upon a hypothetical set of quantum numbers and their relationships; includes answers.
Yoder, Claude H.; Yoder, Carolyn S. J. Chem. Educ. 1990, 67, 759.
Periodicity / Periodic Table |
Atomic Properties / Structure
Understanding electron configurations   Rieck, David F.
The author has successfully employed an analogy for understanding electron configurations recommended for use in secondary schools as well as in nonmajor sections of college general chemistry.
Rieck, David F. J. Chem. Educ. 1990, 67, 398.
Atomic Properties / Structure |
Nonmajor Courses
The periodicity of electron affinity  Myers, R. Thomas
In general, the values of electron affinity for the elements can be understood in terms of their ground state electron configuration, and the screening (effective nuclear charge) exerted on the added electron by the electrons already present in the neutral atom.
Myers, R. Thomas J. Chem. Educ. 1990, 67, 307.
Atomic Properties / Structure |
Periodicity / Periodic Table
A new mnemonic scheme for applying the Aufbau principle  Parsons, Raymond W.
This paper proposes a new mnemonic scheme for arriving at the ground-state electron configuration of a neutral, isolated atom.
Parsons, Raymond W. J. Chem. Educ. 1989, 66, 319.
Atomic Properties / Structure
Chemistry according to ROF (Fee, Richard)  Radcliffe, George; Mackenzie, Norma N.
Two reviews on a software package that consists of 68 programs on 17 disks plus an administrative disk geared toward acquainting students with fundamental chemistry content. For instance, acids and bases, significant figures, electron configuration, chemical structures, bonding, phases, and more.
Radcliffe, George; Mackenzie, Norma N. J. Chem. Educ. 1988, 65, A239.
Chemometrics |
Atomic Properties / Structure |
Equilibrium |
Periodicity / Periodic Table |
Periodicity / Periodic Table |
Stoichiometry |
Physical Properties |
Acids / Bases |
Covalent Bonding
A simple mnemonic device for electron configuration  Grenda, Stanley C.
This visual device provides a great alternative to the usual way of remembering orbital order.
Grenda, Stanley C. J. Chem. Educ. 1988, 65, 697.
Atomic Properties / Structure |
Quantum Chemistry
Periodic table message question  Wieder, Milton J.
This question presents an interesting technique for testing students' grasp of trends in periodicity.
Wieder, Milton J. J. Chem. Educ. 1987, 64, 320.
Periodicity / Periodic Table |
Atomic Properties / Structure
A two-dimensional working model of the neon electron configuration  Bricker, Clark E.
A demonstration that shows a dynamic, two-dimensional working model of the arrangement of the 10 electrons found in the neon core.
Bricker, Clark E. J. Chem. Educ. 1987, 64, 133.
Atomic Properties / Structure
Sociology and Pauli's aufbau rules  Hill, Scott T.
A demonstration to preface the discussion of Pauli's exclusion principle and Hund's rule.
Hill, Scott T. J. Chem. Educ. 1987, 64, 27.
Atomic Properties / Structure
The periodic table and electron configurations  Strong, Judith A.
This author shares her approach to having students learn electron configurations.
Strong, Judith A. J. Chem. Educ. 1986, 63, 834.
Atomic Properties / Structure
Aufbau on a chessboard  Hovland, Allan K.
A chess or checkerboard offers a convenient frame of reference for a mnemonic to use in writing the electron configuration of the elements.
Hovland, Allan K. J. Chem. Educ. 1986, 63, 607.
Atomic Properties / Structure
The significance of arrows in orbital diagrams   Burdman, Clark S.
The author noticed that introductory texts rarely explain electron spin notations. He provides a brief explanation aimed at the student level.
Burdman, Clark S. J. Chem. Educ. 1986, 63, 320.
Atomic Properties / Structure
A simple aid for teaching the theory of atomic structure  Chiang, Hung-cheh; Tseng, Ching-Hwei
A simple game to demonstrate the Pauli exclusion principle, Hund's rule, quantum numbers, electronic energy levels, and electron configurations.
Chiang, Hung-cheh; Tseng, Ching-Hwei J. Chem. Educ. 1984, 61, 216.
Atomic Properties / Structure
4s, 3d, what?  Carpenter, A. Kurtz
The author presents a method to help students memorize the order of electron orbitals.
Carpenter, A. Kurtz J. Chem. Educ. 1983, 60, 562.
Atomic Properties / Structure |
Quantum Chemistry
Why teach the electron configuration of the elements are we do?  Millikan, Roger C.
Out of 106 elements in the table of electron configurations, there are 29 special cases - rules that only work 73% of the time seem hardly worth teaching.
Millikan, Roger C. J. Chem. Educ. 1982, 59, 757.
Atomic Properties / Structure |
Periodicity / Periodic Table
Exchange stabilization and the variation of ionization energy in the pn and dn series  Blake, Antony B.
This article is concerned with two types of ionizations that are of special importance to chemists. The author's main purpose is to clarify current textbook interpretations of the peculiar decrease in ionization energy following completion of a half-filled p or d shell.
Blake, Antony B. J. Chem. Educ. 1981, 58, 393.
MO Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry
Using the Aufbau principle   Whitmer, John C.
This question is written with the belief that general chemistry students should not only attain an understanding of the Aufbau principle enabling them to write down electron configurations, they ought also recognize the correspondence between the quantum numbers and the structures of the periodic table.
Whitmer, John C. J. Chem. Educ. 1978, 55, 515.
Quantum Chemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table
Electron configuration diagram  Krupsaw, Marylin; Ng, George
A simpler schematic diagram for remembering the order of filling subshells when constructing electron configurations.
Krupsaw, Marylin; Ng, George J. Chem. Educ. 1972, 49, 433.
Atomic Properties / Structure |
Periodicity / Periodic Table
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
Anticipating "valences" from electron configurations  Eichinger, Jack W., Jr.
Describes a procedure for predicting "valences" from electron configurations that works well for most metals.
Eichinger, Jack W., Jr. J. Chem. Educ. 1967, 44, 689.
Atomic Properties / Structure |
Metals |
Transition Elements
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Atomic orbital molecular models  Martins, George
Atomic orbital molecular models are constructed using molded white expanded polystyrene in the form of spheres and teardrops.
Martins, George J. Chem. Educ. 1964, 41, 658.
Atomic Properties / Structure |
MO Theory
Graphical representation of electron configurations  Eichinger, Jack W., Jr.
Describes a simple symbolism for electron configurations using circles for orbitals and arrows for electrons.
Eichinger, Jack W., Jr. J. Chem. Educ. 1959, 36, 299.
Atomic Properties / Structure
A demonstration model illustrating the aufbau principle  Everett, D. H.
Describes the construction of a physical device capable of illustrating the relationship between the relative energies of electron orbitals in many-electron atoms, the electronic structure of atoms, and the periodic table.
Everett, D. H. J. Chem. Educ. 1959, 36, 298.
Atomic Properties / Structure |
Periodicity / Periodic Table
Teaching electron configurations  Eichinger, Jack W., Jr.
Time can be saved and confusion avoided by developing a systematic chart of the elements based on the energy levels of atomic orbitals very early in the general college chemistry course.
Eichinger, Jack W., Jr. J. Chem. Educ. 1957, 34, 504.
Atomic Properties / Structure |
Periodicity / Periodic Table