TIGER

Journal Articles: 27 results
Energy  John W. Moore
¬ĚScientific Challenges in Sustainable Energy Technology,¬Ě by Nathan S. Lewis of the California Institute of Technology, summarizes data on energy resources and analyses the implications for human society. Slides, text, and streaming audio/video are available at his Web site. There is much in this presentation that could (and should) be incorporated into chemistry pedagogy.
Moore, John W. J. Chem. Educ. 2008, 85, 891.
Thermodynamics
Job's Analysis of the Range of the "Dalton Syringe Rocket"  Natalie Barto, Brandon Henrie, and Ed Vitz
An apparatus for safely igniting fuel gas/oxygen mixtures in a syringe and measuring the distance that the syringe is propelled is presented. The distance (range) is analyzed by the method of continuous variation (Job's Method) to determine the stoichiometry of the reaction.
Barto, Natalie; Henrie, Brandon; Vitz, Ed. J. Chem. Educ. 2006, 83, 1505.
Gases |
Oxidation / Reduction |
Thermodynamics |
Stoichiometry
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
Incomplete Combustion with Candle Flames: A Guided-Inquiry Experiment in the First-Year Chemistry Lab  Joseph MacNeil and Lisa Volaric
Investigating a burning candle as an introduction to incomplete combustion, thermodynamics, kinetics, and gas chromatography.
MacNeil, Joseph; Volaric, Lisa. J. Chem. Educ. 2003, 80, 302.
Chromatography |
Gases |
Reactions |
Oxidation / Reduction |
Thermodynamics |
Kinetics |
Gas Chromatography
Stories to Make Thermodynamics and Related Subjects More Palatable  Lawrence S. Bartell
Collection of anecdotes regarding the history and human side of chemistry.
Bartell, Lawrence S. J. Chem. Educ. 2001, 78, 1059.
Surface Science |
Thermodynamics |
Kinetic-Molecular Theory |
Applications of Chemistry
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
An Alcohol Rocket Car--A Variation on the "Whoosh Bottle" Theme  Dean J. Campbell
Burning methanol in a wheeled milk jug.
Campbell, Dean J. J. Chem. Educ. 2001, 78, 910.
Gases |
Thermodynamics
Entropy, Disorder, and Freezing  Brian B. Laird
It is argued that the usual view that entropy is a measure of "disorder" is problematic and that there exist systems at high density, for which packing considerations dominate, where a spatially ordered state has a higher entropy than a disordered one.
Laird, Brian B. J. Chem. Educ. 1999, 76, 1388.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Statistical Mechanics
Shuffled Cards, Messy Desks, and Disorderly Dorm Rooms - Examples of Entropy Increase? Nonsense!  Frank L. Lambert
Simply changing the location of everyday macro objects from an arrangement that we commonly judge as orderly to one that appears disorderly is a "zero change" in the thermodynamic entropy of the objects because the number of accessible energetic microstates in any of them has not been changed.
Lambert, Frank L. J. Chem. Educ. 1999, 76, 1385.
Nonmajor Courses |
Statistical Mechanics |
Thermodynamics
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
Studying odd-even effects and solubility behavior using alpha, omega-dicarboxylic acids  Burrows, Hugh D.
Odd-even effect provides a satisfying way of introducing students to a large area of chemistry that encompasses both classical thermodynamics and applied aspects.
Burrows, Hugh D. J. Chem. Educ. 1992, 69, 69.
Precipitation / Solubility |
Physical Properties |
Thermodynamics
With Clausius from energy to entropy  Baron, Maximo
Examination of entropy following the route taken by Clausius.
Baron, Maximo J. Chem. Educ. 1989, 66, 1001.
Thermodynamics
Thermodynamics of the rhodamine B lactone zwitterion equilibrium: An undergraduate laboratory experiment  Hinckley, Daniel A.; Seybold, Paul G.
An experiment to derive thermodynamic values from a thermochromic equilibrium that uses a commercially available dye, attains equilibrium rapidly, and employs a simple, single-beam spectrophotometer.
Hinckley, Daniel A.; Seybold, Paul G. J. Chem. Educ. 1987, 64, 362.
Thermodynamics |
Dyes / Pigments |
Spectroscopy |
Equilibrium
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Bioenergetics
Further reflections on heat  Hornack, Frederick M.
Confusion regarding the nature of heat and thermodynamics.
Hornack, Frederick M. J. Chem. Educ. 1984, 61, 869.
Kinetic-Molecular Theory |
Thermodynamics |
Calorimetry / Thermochemistry
Estimating energy outputs of fuels  Baird, N. Colin
Which is the best fuel in terms of heat energy output: coal, natural gas, fuel oil, hydrogen, or alcohol? It is possible to obtain a semi quantitative estimate of the heat generated by combustion of a fuel from the balanced chemical equation alone.
Baird, N. Colin J. Chem. Educ. 1983, 60, 356.
Reactions |
Green Chemistry |
Thermodynamics |
Alcohols |
Alkanes / Cycloalkanes |
Geochemistry |
Stoichiometry |
Quantitative Analysis
Solar energy experiment for beginning chemistry  Davis, Clyde E.
This article introduces an experiment that incorporates chemical applications of solar energy into the curriculum.
Davis, Clyde E. J. Chem. Educ. 1983, 60, 158.
Thermodynamics |
Applications of Chemistry
Weight-loss diets and the law of conservation of energy   Hill, John W.
The law of conservation of mass is has real-life relevance to those who diet to lose weight.
Hill, John W. J. Chem. Educ. 1981, 58, 996.
Metabolism |
Thermodynamics
Why thermodynamics should not be taught to freshmen, or who owns the problem?  Battino, Rubin
Thermodynamics should not be taught to freshmen - there are better things to do with the time.
Battino, Rubin J. Chem. Educ. 1979, 56, 520.
Thermodynamics
What thermodynamics should be taught to freshmen, or what is the goal?  Campbell, J. A.
The great majority of students in first-year college courses must try to work problems involving changes in enthalpy, entropy, and Gibbs Free Energy.
Campbell, J. A. J. Chem. Educ. 1979, 56, 520.
Thermodynamics
I. How much work can a person do?  Bent, Henry A.
This article relates concepts of work and energy by walking through a calculation of how much work is produced during exercise. [Debut]
Bent, Henry A. J. Chem. Educ. 1978, 55, 456.
Thermodynamics |
Biophysical Chemistry
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Thermodynamics
The second law - How much, how soon, to how many?  Bent, Henry A.
Discussion of the conceptual components of thermodynamics, their mathematical requirements, and where they might be best placed in the curriculum.
Bent, Henry A. J. Chem. Educ. 1970, 47, 337.
Thermodynamics |
Calorimetry / Thermochemistry
Cloud Caps on High Mountains  Stevenson, Philip E.
The formation of cloud caps on high mountains illustrates cooling in an adiabatic expansion and the change in vapor pressure of a liquid with temperature.
Stevenson, Philip E. J. Chem. Educ. 1970, 47, 272.
Atmospheric Chemistry |
Gases |
Applications of Chemistry |
Phases / Phase Transitions / Diagrams |
Thermodynamics
The Methanol Lighter  Bailar, John C., Jr.
The methanol lighter illustrates the roles that thermodynamics, kinetics, and catalysis play in determining if a reaction will take place.
Bailar, John C., Jr. J. Chem. Educ. 1970, 47, 272.
Thermodynamics |
Kinetics |
Catalysis |
Consumer Chemistry |
Applications of Chemistry
Entropy: The significance of the concept of entropy and its applications in science and technology (Fast, J. D.)  Bent, Henry A.

Bent, Henry A. J. Chem. Educ. 1963, 40, 442.
Thermodynamics