TIGER

Journal Articles: 53 results
Calorimetry  JCE Editorial Staff
Lists articles describing laboratory exercises using calorimetry measurements.
J. Chem. Educ. 2008, 85, 1130.
Calorimetry / Thermochemistry
An Inexpensive Solution Calorimeter  Emma Kavanagh, Sam Mindel, Giles Robertson, and D. E. Peter Hughes
Describes the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element, that has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute.
Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter. J. Chem. Educ. 2008, 85, 1129.
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
"Mysteries" of the First and Second Laws of Thermodynamics  Rubin Battino
Over the years the subject of thermodynamics has taken on an aura of difficulty, subtlety, and mystery. This article discusses common misconceptions and how to introduce the topic to students.
Battino, Rubin. J. Chem. Educ. 2007, 84, 753.
Calorimetry / Thermochemistry |
Thermodynamics
Dulong and Petit's Law: We Should Not Ignore Its Importance  Mary Laing and Michael Laing
This article describes two student exercises: the determination of the specific heat of a metal and hence its atomic weight and a graphical study of specific heat versus atomic weight for different groups of metals and the confirmation of Dulong and Petit's law.
Laing, Mary; Laing, Michael. J. Chem. Educ. 2006, 83, 1499.
Calorimetry / Thermochemistry |
Heat Capacity |
Metals |
Periodicity / Periodic Table
Calories - Who's Counting?   JCE Editorial Staff
Students determine how many calories are released per gram when marshmallows and cashews burn and then compare the quantity of energy available from carbohydrates vs. fats.
JCE Editorial Staff . J. Chem. Educ. 2004, 81, 1440A.
Calorimetry / Thermochemistry |
Carbohydrates |
Lipids |
Consumer Chemistry |
Food Science |
Nutrition |
Fatty Acids
An Alternative Thermochemical Container   Robert G. Silberman
Dean Campbell suggests a clever, readily available, and simple alternative to the calorimeters described in my article. I tried his suggestion and egg cartons work well with the appropriate scale up of materials. The only advantage I see to the calorimeter I described is somewhat greater durability and need for smaller amounts of chemicals.
Silberman, Robert G. J. Chem. Educ. 2004, 81, 1421.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
An Alternative Thermochemical Container  Dean J. Campbell
I was intrigued with the JCE Classroom Activity: #59 "Some Like It Hot, Some Like It Cold." I think that a polystyrene foam egg carton (or even multiple nested cartons) would be an adequate container for mixing the solutions and performing thermochemical measurements.
Campbell, Dean J. J. Chem. Educ. 2004, 81, 1421.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics  Bryce E. Williamson and Tetsuo Morikawa
Presentation of a chemically relevant model that exemplifies many aspects of the second law: reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry.
Williamson, Bryce E.; Morikawa, Tetsuo. J. Chem. Educ. 2002, 79, 339.
Calorimetry / Thermochemistry |
Electrochemistry |
Thermodynamics
A Simplified Method for Measuring the Entropy Change of Urea Dissolution. An Experiment for the Introductory Chemistry Lab  Charles A. Liberko and Stephanie Terry
Guided inquiry to determine values for changes in enthalpy, Gibb's free energy, and entropy for the dissolution of urea in water.
Liberko, Charles A.; Terry, Stephanie. J. Chem. Educ. 2001, 78, 1087.
Thermodynamics |
Calorimetry / Thermochemistry
The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology  Lars Wadsö, Allan L. Smith, Hamid Shirazi, S. Rose Mulligan, and Thomas Hofelich
A simple but sensitive isothermal heat-conduction calorimeter and five experiments for students to illustrate its use (heat capacity of solids, acid-base titration, enthalpy of vaporization of solvents, cement hydration, and insect metabolism).
Wadsö, Lars; Smith, Allan L.; Shirazi, Hamid; Mulligan, S. Rose; Hofelich, Thomas. J. Chem. Educ. 2001, 78, 1080.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
A Simple Computer-Interfaced Calorimeter: Application to the Determination of the Heat of Formation of Magnesium Oxide  Sze-Shun Wong, Natasha D. Popovich, and Shelley J. Coldiron
Design, construction, and laboratory instructional application of a simple computer-controlled, constant-pressure calorimeter.
Wong, Sze-Shun; Popovich, Natasha D.; Coldiron, Shelley J. J. Chem. Educ. 2001, 78, 798.
Calorimetry / Thermochemistry |
Instrumental Methods |
Thermodynamics |
Laboratory Equipment / Apparatus
A Visual Aid in Enthalpy Calculations  Sebastian G. Canagaratna
This article discusses the use of enthalpy-temperature diagrams for reactants and products as a visual aid in the teaching of reaction-enthalpy calculations. By the use of such diagrams the division of the process into a part involving a chemical reaction without a temperature change and a part involving only a temperature change is made visually concrete.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 1178.
Thermodynamics |
Calorimetry / Thermochemistry
The Enthalpy of Decomposition of Hydrogen Peroxide: A General Chemistry Calorimetry Experiment  Charles J. Marzzacco
The experiment is simple, inexpensive, and colorful. In its simplest form, it can be performed in less than one hour; therefore, it is quite suitable for high school labs, which often have time restrictions. The chemicals required are household or commercial 3% H2O2(aq) and 0.50 M Fe(NO3)3(aq).
Marzzacco, Charles J. J. Chem. Educ. 1999, 76, 1517.
Calorimetry / Thermochemistry |
Catalysis
An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement  Mark Muyskens
Application of an integrated-circuit (IC) temperature sensor which is easy-to-use, inexpensive, rugged, easily computer-interfacable and has good precision is described. The design, based on the National Semiconductor LM35 IC chip, avoids some of the difficulties associated with conventional sensors (thermocouples, thermistors, and platinum resistance thermometers) and a previously described IC sensor.
Muyskens, Mark. J. Chem. Educ. 1997, 74, 850.
Calorimetry / Thermochemistry |
Thermal Analysis |
Thermodynamics |
Laboratory Equipment / Apparatus |
Instrumental Methods
Reports from Other Journals: Gleanings from Scientific American  Paul F. Schatz
Scientific American provides a rich resource of background and general interest material for topics of chemical interest that can be used to supplement and enhance chemistry lecture and laboratory courses.
Schatz, Paul F. J. Chem. Educ. 1996, 73, A234.
Drugs / Pharmaceuticals |
Nuclear / Radiochemistry |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Applications of Chemistry |
Consumer Chemistry |
Laboratory Management
Home-Study Microlabs  Dietmar Kennepohl
This article presents the use of microscaled chemistry experiments for individual home study and how it can be incorporated into a course with traditional laboratory work.
Kennepohl, Dietmar. J. Chem. Educ. 1996, 73, 938.
Microscale Lab |
Solutions / Solvents |
Calorimetry / Thermochemistry |
Qualitative Analysis |
Precipitation / Solubility
Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Course   Susan M. Temme
Using differential scanning calorimetry (DSC) in AP chemistry.
Temme, Susan M. J. Chem. Educ. 1995, 72, 916.
Calorimetry / Thermochemistry |
Calorimetry / Thermochemistry |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Thermal Analysis |
Thermodynamics
Calorie Content of Foods: A Laboratory Experiment Introducing Measuring by Calorimeter  Cohen, Bernard L.; Schilken, Catherine A.
Overcoming the challenges posed by determining the calorie content of food by calorimetry.
Cohen, Bernard L.; Schilken, Catherine A. J. Chem. Educ. 1994, 71, 342.
Calorimetry / Thermochemistry |
Food Science
An Economical, Safe, and Sturdy Student Calorimeter  Ruekberg, Ben
Replacing the styrofoam, coffee cup calorimeter with the Snak Jar.
Ruekberg, Ben J. Chem. Educ. 1994, 71, 333.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Heat of solution of hydrogen chloride: A laboratory experiment  Harms, Gregory S.; Lehman, Thomas A.
A simple technique for measuring the heat of solution of HCl in water.
Harms, Gregory S.; Lehman, Thomas A. J. Chem. Educ. 1993, 70, 955.
Acids / Bases |
Solutions / Solvents |
Calorimetry / Thermochemistry
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
Measuring the heat of sublimation of dry ice with a polystyrene foam cup calorimeter  Burgstahler, Albert W.; Bricker, Clark E.
Two versions of an insulated cup calorimetry experiment.
Burgstahler, Albert W.; Bricker, Clark E. J. Chem. Educ. 1991, 68, 332.
Calorimetry / Thermochemistry
Bomb calorimeter simulation  Olney, David J.
Simulation of the apparatus and use of a bomb calorimeter; contains nine known samples and eight unknowns.
Olney, David J. J. Chem. Educ. 1990, 67, 922.
Calorimetry / Thermochemistry
Experiments with "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.

Paris, Michel R.; Aymes, Daniel J. J. Chem. Educ. 1990, 67, 510.
Laboratory Equipment / Apparatus |
Thermodynamics |
Calorimetry / Thermochemistry
Development of a new design for multipurpose meter: "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland
The purpose of this article is to describe the design of a common box that can be turned into a simple voltmeter, a pH meter, or a calorimeter.
Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland J. Chem. Educ. 1990, 67, 507.
Laboratory Equipment / Apparatus |
Electrochemistry |
pH |
Calorimetry / Thermochemistry
Heating values of fuels: An introductory experiment  Rettich, Timothy R.; Battino, Rubin; Karl, David J.
This experiment is a simple, inexpensive way for students to determine the heats of combustion of common solid, liquid, and gaseous fuels.
Rettich, Timothy R.; Battino, Rubin; Karl, David J. J. Chem. Educ. 1988, 65, 554.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
A note concerning safety in bomb calorimetry  Wilson, Leland Y.; Tatum, Roger
Safety measures when using bomb calorimeters.
Wilson, Leland Y.; Tatum, Roger J. Chem. Educ. 1985, 62, 902.
Calorimetry / Thermochemistry
Chemical storage of solar energy using an old color change demonstration  Spears, L. Gene, Jr.; Spears, Larry G.
The results of a student research project that could be used as an experiment to illustrate the potential of hydrates salts for solar energy storage.
Spears, L. Gene, Jr.; Spears, Larry G. J. Chem. Educ. 1984, 61, 252.
Photochemistry |
Coordination Compounds |
Solutions / Solvents |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry
Chemical energy: A learning package  Cohen, Ita; Ben-Zvi, Ruth
Problems associated with the teaching of chemical energy and an instructional package designed to overcome those difficulties.
Cohen, Ita; Ben-Zvi, Ruth J. Chem. Educ. 1982, 59, 656.
Thermodynamics |
Calorimetry / Thermochemistry
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Hydrogen bonding and heat of solution  Friedman, Norman
An experiment that clearly illustrates the role of hydrogen bond formation and its effect on the heat of solution.
Friedman, Norman J. Chem. Educ. 1977, 54, 248.
Hydrogen Bonding |
Calorimetry / Thermochemistry |
Solutions / Solvents
Heat of combustion of zirconium. A general chemistry experiment  Banks, Richard C.; Carter, Loren; Peterson, Ellis R.
Experiment consists of a flash bulb surrounded by water and fired by a battery.
Banks, Richard C.; Carter, Loren; Peterson, Ellis R. J. Chem. Educ. 1975, 52, 235.
Calorimetry / Thermochemistry
A simplified undergraduate calorimetry experiment  Bartle, K. D.; Osborn, P. M.
A glass calorimeter for determining ?H for the neutralization of a strong acid with a strong base.
Bartle, K. D.; Osborn, P. M. J. Chem. Educ. 1973, 50, 637.
Acids / Bases |
Reactions |
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
A computer program for heat of combustion calculations  Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol
A computer program is available for converting raw combustion data to the standard state energy of combustion.
Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol J. Chem. Educ. 1973, 50, 486.
Calorimetry / Thermochemistry |
Chemometrics
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
A calorimeter for general chemistry  Garin, D. L.
Suggests an insulated food jar as a durable and suitable calorimeter for general chemistry.
Garin, D. L. J. Chem. Educ. 1968, 45, 37.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Recent developments in calorimetry: Part two. Some associated measurements (cont.)  Wilhoit, Randolph C.
Examines the measurement of electricity, calorimetric standards, solution calorimetry, and specific types of calorimeters.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A685.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Recent developments in calorimetry (continued) Part 2. Some associated measurements  Wilhoit, Randolph C.
Topics examined include thermocouples, resistance thermometers, thermistors, and quartz crystal thermometers.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A629.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Recent developments in calorimetry. Part 1. Introductory survey of calorimetry  Wilhoit, Randolph C.
Explores the scope and purpose of calorimetric investigation, types of calorimeters, areas of calorimetric investigation and the procedures and calculations involved.
Wilhoit, Randolph C. J. Chem. Educ. 1967, 44, A571.
Calorimetry / Thermochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Enthalpies of formation of solid salts  Neidig, H. A.; Yingling, R. T.
This investigation introduces the student to several important areas of thermochemistry, including enthalpies of neutralization, enthalpies of dissolution, enthalpies of formation, and Hess' Law.
Neidig, H. A.; Yingling, R. T. J. Chem. Educ. 1965, 42, 474.
Thermodynamics |
Solids |
Calorimetry / Thermochemistry |
Precipitation / Solubility |
Acids / Bases |
Aqueous Solution Chemistry
A sensitive inexpensive thermometer  Slabaugh, W. H.
Presents a circuit diagram for a simple thermistor.
Slabaugh, W. H. J. Chem. Educ. 1965, 42, 467.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Thermochemical investigations for a first-year college chemistry course. A survey of existing literature  Ewing, Galen W.
The purpose of this article is to review some of the experiments that appear in the literature involving thermochemistry.
Ewing, Galen W. J. Chem. Educ. 1965, 42, 26.
Calorimetry / Thermochemistry
Heat of precipitation  Clever, H. L.
Provides suggestions for research to accompany earlier published articles.
Clever, H. L. J. Chem. Educ. 1963, 40, A386.
Undergraduate Research |
Calorimetry / Thermochemistry |
Precipitation / Solubility
Calorimetry  Kokes, R. J.; Dorfman, M. K.; Mathia, T.
The freshman chemistry lab involves measuring the heat capacities of nickel and copper and the heats of two neutralization reactions.
Kokes, R. J.; Dorfman, M. K.; Mathia, T. J. Chem. Educ. 1962, 39, 90.
Calorimetry / Thermochemistry
Temperature and power measurements in precision solution calorimetry  O'Hara, William F.; Wu, Ching-Hsien; Hepler, Loren G.
Presents the design of a calorimetric apparatus, and accompanying circuit schematic, and their application to calorimetry measurements.
O'Hara, William F.; Wu, Ching-Hsien; Hepler, Loren G. J. Chem. Educ. 1961, 38, 512.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
Heat of reaction and H2SO4 concentration: A general chemistry experiment  Wolthuis, Enno; Leegwater, Arie; Ploeg, John Vander
This procedure measures the heat of reaction between water and sulfuric acid of various concentrations; this information is used to determine the concentration of an unknown acid sample.
Wolthuis, Enno; Leegwater, Arie; Ploeg, John Vander J. Chem. Educ. 1961, 38, 472.
Calorimetry / Thermochemistry |
Reactions |
Aqueous Solution Chemistry |
Acids / Bases
Heat of precipitation: A general chemistry experiment  Clever, H. Lawrence
This heat of precipitation experiment is conducted in a simple calorimeter constructed by each student from an Erlenmeyer flask.
Clever, H. Lawrence J. Chem. Educ. 1961, 38, 470.
Calorimetry / Thermochemistry |
Precipitation / Solubility
A flashbulb bomb calorimeter  Hornyak, Frederick M.
This report describes a do-it-yourself experiment in thermochemistry using flashbulbs as calorimeter bombs.
Hornyak, Frederick M. J. Chem. Educ. 1961, 38, 97.
Laboratory Equipment / Apparatus |
Calorimetry / Thermochemistry
Water equivalent of vacuum flask calorimeter by the ice fusion method  Dunicz, Boleslaw Ludwik
Presents the design of a vacuum flask calorimeter and describes the determination of its water equivalent by the ice fusion method.
Dunicz, Boleslaw Ludwik J. Chem. Educ. 1960, 37, 635.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus
A simple ice calorimeter: A first experiment in thermochemistry  Mahan, Bruce H.
This note describes a relatively crude and simple ice calorimeter that can be supplied to each student.
Mahan, Bruce H. J. Chem. Educ. 1960, 37, 634.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermodynamics
Calorimeter for determining heat capacities of liquids  Greene, Stanley A.
This paper describes a method for utilizing a constant-power heating device that eliminates the need for a preponderance of equipment yet permits reasonable accuracy in determining the heat capacities of liquids.
Greene, Stanley A. J. Chem. Educ. 1955, 32, 577.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Liquids
A common misunderstanding of Hess' law  Davis, Thomas. W.
The statement, sometimes attributed to Hess, that "In any series of chemical or physical changes the total heat effect is independent of the path by which the system goes from its initial to its final state" is incorrect.
Davis, Thomas. W. J. Chem. Educ. 1951, 28, 584.
Stoichiometry |
Acids / Bases |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry