TIGER

Journal Articles: 32 results
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
Chemistry Comes Alive!, Volume 8. Abstract of Special Issue 34  Rachel Bain, Jerrold J. Jacobsen, James H. Maynard, John W. Moore, and C. Jonathan Mitschele
Chemistry Comes Alive! Volume 8 can help move students understanding of waves from mechanical models to the chemical phenomena those models explain.
Bain, Rachel; Jacobsen, Jerrold J.; Maynard, James H.; Moore, John W.; Mitschele, C. Jonathan. J. Chem. Educ. 2006, 83, 1406.
Mechanisms of Reactions |
Reactions
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
The Virtual ChemLab Project: A Realistic and Sophisticated Simulation of Organic Synthesis and Organic Qualitative Analysis  Brian F. Woodfield, Merritt B. Andrus, Gregory L. Waddoups, Melissa S. Moore, Richard Swan, Rob Allen, Greg Bodily, Tricia Andersen, Jordan Miller, Bryon Simmons, and Richard Stanger
Describes a set of sophisticated and realistic laboratory simulations for use in freshman- and sophomore-level chemistry classes and laboratories called Virtual ChemLab. The purpose of these simulations is to reinforce concepts taught in the classroom, provide an environment for creative learning, and emphasize the thinking behind instructional laboratory experiments.
Woodfield, Brian F.; Andrus, Merritt B.; Waddoups, Gregory L.; Moore, Melissa S.; Swan, Richard; Allen, Rob; Bodily, Greg; Andersen, Tricia; Miller, Jordan; Simmons, Bryon; Stanger, Richard. J. Chem. Educ. 2005, 82, 1728.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Synthesis |
Reactions |
Thin Layer Chromatography
A Substitute for “Bromine in Carbon Tetrachloride”  Joshua M. Daley and Robert G. Landolt
Benzotrifluoride (BTF) is a suitable solvent substitute for carbon tetrachloride in experiments requiring application of bromine (Br2) in free radical or addition reactions with organic substrates. A 1 M solution of Br2 in BTF may be used to distinguish hydrocarbons based on the ease of abstraction of hydrogen atoms in thermally or light-induced free radical substitutions. Efficacy of minimization of solvent use, by aliquot addition to neat samples, has been established.
Daley, Joshua M.; Landolt, Robert G. J. Chem. Educ. 2005, 82, 120.
Alkenes |
Free Radicals |
Green Chemistry |
Qualitative Analysis |
Reactions
Applying the Reaction Table Method for Chemical Reaction Problems (Stoichiometry and Equilibrium)  Steven F. Watkins
A systematic approach to chemical reaction calculations (stoichiometry calculations) - the "Reaction Table Method" (similar to the equilibrium table method).
Watkins, Steven F. J. Chem. Educ. 2003, 80, 658.
Equilibrium |
Stoichiometry |
Reactions |
Kinetics
Chemical Equilibria Involving Copper(II) Ethylenediamine Complexes  Roberto Zingales
Demonstration illustrating the formation of two different complexes when copper(II) ions react with ethylenediamine.
Zingales, Roberto. J. Chem. Educ. 2003, 80, 535.
Equilibrium |
Aqueous Solution Chemistry |
Reactions |
Amines / Ammonium Compounds |
Precipitation / Solubility
Redox Redux: Recommendations for Improving Textbook and IUPAC Definitions  Ed Vitz
Defining oxidation / reduction reactions as those in which oxidation states of the reactant(s) change.
Vitz, Ed. J. Chem. Educ. 2002, 79, 397.
Electrochemistry |
Mechanisms of Reactions |
Oxidation / Reduction |
Oxidation State
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
Photon-Initiated Hydrogen-Chlorine Reaction  Schwenz, Richard; Geiger, Lynn
Incorrect termination step for the H2 + Cl2 reaction mechanism.
Schwenz, Richard; Geiger, Lynn J. Chem. Educ. 1999, 76, 470.
Mechanisms of Reactions
Synthesis of Aspirin: A General Chemistry Experiment  John A. Olmsted III
An experiment is described that is suitable for the early portion of the laboratory in a general chemistry course and integrates organic examples. It is the two-step synthesis of aspirin starting from oil of wintergreen. The mechanism for this synthesis provides examples of three major classes of chemical reactions: hydrolysis, condensation, and proton transfer.
Olmsted, John A., III. J. Chem. Educ. 1998, 75, 1261.
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Mechanisms of Reactions |
Aromatic Compounds |
Carboxylic Acids |
Aldehydes / Ketones
Methanol Cannon Demonstrations Revisited  David A. Dolson, Michael E. Dolson, Michael R. Hall, Rubin Battino, Lisa S. Jutte
Demonstrations involving methanol cannons and chain reactions.
Dolson, David A.; Dolson, Michael E.; Hall, Michael R.; Battino, Rubin; Jutte, Lisa S. J. Chem. Educ. 1995, 72, 732.
Free Radicals |
Reactions |
Alcohols
Put a Little Kaboom in Your Classroom  Barondeau, Mike
Instructions for constructing a calcium carbide/acetylene cannon from PVC pipe.
Barondeau, Mike J. Chem. Educ. 1995, 72, 176.
Reactions |
Laboratory Equipment / Apparatus
Computers and Practical Chemistry  Gipps, John
164. Particularly appropriate examples for the computer interfacing of laboratory experiments.
Gipps, John J. Chem. Educ. 1994, 71, 671.
Laboratory Computing / Interfacing |
Acids / Bases |
Equilibrium |
Reactions
A simple and colorful demonstration of light-catalyzed bromination of an alkane  Stevens, Malcolm P.
Light-catalyzed bromination of an alkane.
Stevens, Malcolm P. J. Chem. Educ. 1992, 69, 1028.
Catalysis |
Alkanes / Cycloalkanes |
Photochemistry |
Reactions
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
A catalog of reactions for general chemistry  Tykodi, R. J.
A catalog of chemical reactions intended to help students understand what kinds of chemical reactions commonly occur and why.
Tykodi, R. J. J. Chem. Educ. 1990, 67, 665.
Reactions |
Descriptive Chemistry
In pursuit of chemical literacy: A place for chemical reactions  Bond, Douglas
The author has described one method of implementing a course for nonscience majors in which an early and repeated exposure to chemical reactions in tandem with a set of scientific values is the key to approaching scientific literacy.
Bond, Douglas J. Chem. Educ. 1989, 66, 157.
Nonmajor Courses |
Reactions
Oscillating reactions   Kolb, Doris.
A demonstration done on the overhead that oscillates.
Kolb, Doris. J. Chem. Educ. 1988, 65, 1004.
Reactions |
Equilibrium |
Kinetics
Annotating reaction equations  Tykodi, R. J.
Annotating aqueous solution reactions fosters recognition of the fundamental reaction categories; ready recognition of a reaction type is the first step toward understanding the "whys and wherefores" inherent in the reaction.
Tykodi, R. J. J. Chem. Educ. 1987, 64, 243.
Aqueous Solution Chemistry |
Reactions |
Acids / Bases |
Gases |
Precipitation / Solubility |
Oxidation / Reduction
The coming renaissance of descriptive chemistry  Zuckerman, J. J.
Inorganic chemistry is facing an identity crises.
Zuckerman, J. J. J. Chem. Educ. 1986, 63, 829.
Descriptive Chemistry |
Spectroscopy |
Synthesis |
Reactions |
Physical Properties |
Solutions / Solvents
How to get the most from the dichromate volcano demonstration: Aluminothermy  Trogler, William C.
Reducing the green ash produced by the dichromate volcano (Cr2O3) with aluminum in a thermite-like display.
Trogler, William C. J. Chem. Educ. 1984, 61, 908.
Reactions |
Oxidation / Reduction
Dramatic demonstrations for a large audience: The formation of hydroxyl ions in the reaction of sodium with water   Hutton, Alan T.
This procedure allows the popular sodium-reacting-with-water reaction to be observable in large lecture theaters.
Hutton, Alan T. J. Chem. Educ. 1981, 58, 506.
Reactions |
Periodicity / Periodic Table
Dramatic demonstrations for a large audience: The formation of hydroxyl ions in the reaction of sodium with water   Hutton, Alan T.
This procedure allows the popular sodium-reacting-with-water reaction to be observable in large lecture theaters.
Hutton, Alan T. J. Chem. Educ. 1981, 58, 506.
Reactions |
Periodicity / Periodic Table
What is the rate-limiting step of a multistep reaction?  Murdoch, Joseph R.
The purpose of this paper is to point out the circumstances where analogies can be used successfully and to develop a generalization which can be used for all reactions, including those with polymolecular steps.
Murdoch, Joseph R. J. Chem. Educ. 1981, 58, 32.
Kinetics |
Reactions |
Rate Law
Chemical oscillations as an undergraduate experiment  Deb, B. M.
Hitherto unreported observations regarding the Briggs-Rauscher oscillating system.
Deb, B. M. J. Chem. Educ. 1977, 54, 236.
Reactions |
Kinetics
The reactions of ferroin complexes. A color-to-colorless freshman kinetic experiment  Edwards, John O.; Edwards, Kathleen; Palma, Jorge
A group of related reactions that can be easily followed with a colorimeter which show that the mechanism by which a reaction takes place may not be at all obvious from the stoichiometry.
Edwards, John O.; Edwards, Kathleen; Palma, Jorge J. Chem. Educ. 1975, 52, 408.
Kinetic-Molecular Theory |
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Stoichiometry |
Mechanisms of Reactions
Bimolecular nucleophilic displacement reactions  Edwards, John O.
The bimolecular nucleophilic displacement reaction is important and should be included in any detailed discussion of kinetics and mechanism at an early undergraduate level.
Edwards, John O. J. Chem. Educ. 1968, 45, 386.
Reactions |
Nucleophilic Substitution |
Kinetics |
Mechanisms of Reactions
Chemical dynamics for college freshmen  Hammond, George S.; Gray, Harry B.
Suggestions for topics regarding chemical dynamics to be considered in freshman chemistry.
Hammond, George S.; Gray, Harry B. J. Chem. Educ. 1968, 45, 354.
Thermodynamics |
Kinetics |
Reactions |
Mechanisms of Reactions |
Rate Law
Polymerization of ethylene at atmospheric pressure: A demonstration using a "Ziegler" type catalyst  Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max
A simple experiment on the polymerization of ethylene at atmospheric pressure is described using a "Ziegler" type catalyst prepared from amyl lithium and titanium tetrachloride.
Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max J. Chem. Educ. 1958, 35, 344.
Polymerization |
Reactions |
Catalysis |
Alkenes
Simple generalized reaction schemes  Estok, George K.
In the early development of a student's background in chemistry it seems desirable to encourage an integrated understanding of the types of chemical particles and the formal ways in which they may react.
Estok, George K. J. Chem. Educ. 1956, 33, 115.
Reactions