TIGER

Journal Articles: 69 results
Elemental Chem Lab  Antonio Joaquín Franco Mariscal
Three puzzles use the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs.
Franco Mariscal, Antonio Joaquín. J. Chem. Educ. 2008, 85, 1370.
Laboratory Equipment / Apparatus |
Nomenclature / Units / Symbols |
Periodicity / Periodic Table
Teaching Mathematics to Chemistry Students with Symbolic Computation  J. F. Ogilvie and M. B. Monagan
The authors explain how the use of mathematical software improves the teaching and understanding of mathematics to and by chemistry students while greatly expanding their abilities to solve realistic chemical problems.
Ogilvie, J. F.; Monagan, M. B. J. Chem. Educ. 2007, 84, 889.
Chemometrics |
Computational Chemistry |
Fourier Transform Techniques |
Mathematics / Symbolic Mathematics |
Nomenclature / Units / Symbols
Sudoku Puzzles as Chemistry Learning Tools  Thomas D. Crute and Stephanie A. Myers
Sudoku puzzles that use a mixture of chemical terms and symbols serve as a tool to encourage the necessary repetition and attention to detail desired for mastering chemistry. The classroom-ready examples provided use polyatomic ions, organic functional groups, and strong nucleophiles. Guidelines for developing additional puzzles are described.
Crute, Thomas D.; Myers, Stephanie A. J. Chem. Educ. 2007, 84, 612.
Learning Theories |
Nomenclature / Units / Symbols |
Student-Centered Learning
The Use of Dots in Chemical Formulas  William B. Jensen
Traces the origins and uses of dots in chemical formulas.
Jensen, William B. J. Chem. Educ. 2006, 83, 1590.
Nomenclature / Units / Symbols
More on the Nature of Resonance  Robert C. Kerber
The author continues to find the use of delocalization preferable to resonance.
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 1291.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Resonance Theory |
Nomenclature / Units / Symbols
More on the Nature of Resonance  William B. Jensen
Supplements a recent article on the interpretation of resonance theory with three additional observationsone historical and two conceptual.
Jensen, William B. J. Chem. Educ. 2006, 83, 1290.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Acid–Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols  David E. Goodney
Examples of acidbase reactions from Robert Boyle's The Sceptical Chemist are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe what can be done quite simply with a chemical equation.
Goodney, David E. J. Chem. Educ. 2006, 83, 1001.
Acids / Bases |
Descriptive Chemistry |
Nonmajor Courses |
Reactions |
Nomenclature / Units / Symbols
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Improving Conceptions in Analytical Chemistry: ci Vi = cf Vf  Margarita Rodríguez-López and Arnaldo Carrasquillo Jr.
A common misconception related to analytical chemistry, which may be generalized as the failure to recognize and to account analytically for changes in substance density, is discussed. A cautionary example is made through the use of mass-based units of composition during volumetric dilution. The correct application of the volumetric dilution equation ci Vi = cf Vf is discussed. A quantitative description of the systematic error introduced by incorrect use of the volumetric dilution equation is also specified.
Rodríguez-López, Margarita; Carrasquillo, Arnaldo, Jr. J. Chem. Educ. 2005, 82, 1327.
Industrial Chemistry |
Nomenclature / Units / Symbols |
Quantitative Analysis |
Solutions / Solvents
SI for Chemists: Persistent Problems, Solid Solutions; SI Basic Units: The Kilogram and the Mole  Robert D. Freeman
Karols letter is a prime example of the type of article about which he complains in his first paragraph. There are four major flaws in Karols suggestions.
Freeman, Robert D. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
Find the Symbols of Elements Using a Letter Matrix Puzzle  V. D. Kelkar
Letter matrix puzzle using chemical symbols.
Kelkar, V. D. J. Chem. Educ. 2003, 80, 411.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Mole, Mole per Liter, and Molar: A Primer on SI and Related Units for Chemistry Students  George Gorin
A brief historical overview of the SI system, the concept of the mole and the definition of mole unit, the status of the liter in the metric and SI systems, and the meaning of molar and molarity.
Gorin, George. J. Chem. Educ. 2003, 80, 103.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Enrichment / Review Materials
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  Moreno Paolini, Giovanni Cercignani, and Carlo Bauer
Alternative units in which to express atomic weight.
Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  George Gorin
Alternative units in which to express atomic weight.
Gorin, George. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
Correctly Expressing Atomic Weights   Moreno Paolini, Giovanni Cercignani, and Carlo Bauer
Proposal on the basis of clear-cut formulas that, contrary to customary statements, atomic and molecular weights should be expressed as dimensional quantities (masses) in which the Dalton (= 1.663 x 10-24 g) is taken as the unit.
Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo. J. Chem. Educ. 2000, 77, 1438.
Nomenclature / Units / Symbols |
Learning Theories
Are We Taking Symbolic Language for Granted?   Paul Marais and Faan Jordaan
This study formed part of a broader investigation into the role of language in teaching and learning chemical equilibrium. Students were tested for their understanding of 25 words and five symbols commonly used in connection with chemical equilibrium. This test showed that most of the students had an inadequate grasp of the meaning of all five symbols. It also showed that, on the average, their understanding of symbols was more problematic than their understanding of words.
Marais, Paul; Jordaan, Faan. J. Chem. Educ. 2000, 77, 1355.
Equilibrium |
Nomenclature / Units / Symbols
Classroom Nomenclature Games--BINGO  Thomas D. Crute
The use of games in the chemistry classroom can provide instruction, feedback, practice, and fun. A modification of a BINGO game to chemical nomenclature and a specific application to alkanes are described. Tips on preparation of materials, and suggested variations including inorganic nomenclature are presented.
Crute, Thomas D. J. Chem. Educ. 2000, 77, 481.
Learning Theories |
Nomenclature / Units / Symbols |
Nonmajor Courses
The Use of Extent of Reaction in Introductory Courses  Sebastian G. Canagaratna
This article discusses the use of the extent of reaction as an alternative to the traditional approach to stoichiometry in first-year chemistry. The method focuses attention on the reaction as a whole rather than on pairs of reagents as in the traditional approach. The balanced equation is used as the unit of change.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 52.
Stoichiometry |
Thermodynamics |
Nomenclature / Units / Symbols
Using Games To Teach Chemistry. 2. CHeMoVEr Board Game  Jeanne V. Russell
A board game similar to Sorry or Parcheesi was developed. Students must answer chemistry questions correctly to move their game piece around the board. Card decks contain questions on balancing equations, identifying the types of equations, and predicting products from given reactants.
Russell, Jeanne V. J. Chem. Educ. 1999, 76, 487.
Stoichiometry |
Nomenclature / Units / Symbols
Using Games to Teach Chemistry. 1. The Old Prof Card Game  Philip L. Granath and Jeanne V. Russell
A card game has been developed and used to teach nomenclature of the elements and their symbols in the first laboratory session of General Chemistry. The game both helps the students learn or review the symbols of the elements and is a good "icebreaker" where students learn the names of other students.
Granath, Philip L.; Russell, Jeanne V. J. Chem. Educ. 1999, 76, 485.
Learning Theories |
Nomenclature / Units / Symbols
A Note on the Term "Chalcogen"  William B. Jensen
It is argued that the best translation of the term "chalcogen" is "ore former." It is further suggested that the term chalcogenide should be replaced with the term chalcide in order to maintain a parallelism with the terms halogen and halide.
Jensen, William B. J. Chem. Educ. 1997, 74, 1063.
Nomenclature / Units / Symbols |
Periodicity / Periodic Table |
Descriptive Chemistry
Exponential Notation  Gavin D Peckham
Suggestion for streamlined typing of exponential notation.
Peckham, Gavin D. J. Chem. Educ. 1997, 74, 64.
Nomenclature / Units / Symbols
Symbolic Algebra and Stoichiometry  DeToma, Robert P.
Applying symbolic algebra (instead of the factor-label method) to stoichiometry calculations.
DeToma, Robert P. J. Chem. Educ. 1994, 71, 568.
Chemometrics |
Nomenclature / Units / Symbols
Mole and Chemical Amount: A Discussion of the Fundamental Measurements of Chemistry  Gorin, George
Demonstrates that the mole is little different from other units of measurement.
Gorin, George J. Chem. Educ. 1994, 71, 114.
Nomenclature / Units / Symbols
Name for the basic physical quantity n, symbol for relative mass  Nelson, P. G.
Recommendations for naming the basic physical quantity n, symbol for relative mass.
Nelson, P. G. J. Chem. Educ. 1990, 67, 628.
Nomenclature / Units / Symbols |
Stoichiometry
Quantities, Units, and Symbols in Physical Chemistry (Mills, Ian; Cvitas, Tomislav; Homann, Klaus; Kallay, Nikola; Kuchitsu, Kozo)  Freeman, Robert D.
Everything you ever wanted to know about physical quantities, symbols, and units.
Freeman, Robert D. J. Chem. Educ. 1989, 66, A188.
Nomenclature / Units / Symbols
Chemical Nomenclature and Balancing Equations (Bergwall Educational Software)  Kling, Timothy A.
These computer programs deal exclusively with the subjects of inorganic nomenclature and balancing simple equations.
Kling, Timothy A. J. Chem. Educ. 1989, 66, A41.
Nomenclature / Units / Symbols
Amending the IUPAC Green Book  Tykodi, R. J.
Suggested amendments to the IUPAC Green Book regarding standardized chemical terminology and units of measure.
Tykodi, R. J. J. Chem. Educ. 1989, 66, 1064.
Nomenclature / Units / Symbols
Elementary my dear Watson  Helser, Terry L.
A puzzle using the names and symbols of the elements.
Helser, Terry L. J. Chem. Educ. 1989, 66, 980.
Nomenclature / Units / Symbols
Fundamental concepts in the teaching of chemistry: Part 1. The two worlds of the chemist make nomenclature manageable  Loeffler, Paul A.
A proposal to precisely define and consistently employ the terms chemical substance and chemical species; the article uses the classification of matter and nomenclature as examples of the scheme's application.
Loeffler, Paul A. J. Chem. Educ. 1989, 66, 928.
Nomenclature / Units / Symbols |
Learning Theories
Writing Chemical Formulas, Review I (Ross, Don)  Pavlovich, Joseph M.
Program to give students practice in writing chemical formulas and to facilitate the understanding of balancing positive and negative charges in a chemical formula.
Pavlovich, Joseph M. J. Chem. Educ. 1987, 64, A88.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
SI and non-SI units of concentration: A truce?  Rich, Ronald L.
These authors examine whether a truce could be promoted by filling a chemical gap in the System Internationale with special attention on concentration.
Rich, Ronald L. J. Chem. Educ. 1986, 63, 784.
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Find-the-pairs  Ryan, Jack
73. Bits and pieces, 29. A computer game that can help students avoid the drudgery of memorizing such essential items as elemental names and symbols or conversion factors.
Ryan, Jack J. Chem. Educ. 1986, 63, 626.
Nomenclature / Units / Symbols
A flowchart for dimensional analysis  Graham, D. M.
A flowchart to help students organize their thoughts when solving conversion problems.
Graham, D. M. J. Chem. Educ. 1986, 63, 527.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
Mathematics in the chemistry classroom. Part 1. The special nature of quantity equations  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
Differences between operation on quantities and operation on numbers and how chemical quantities should be described mathematically.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 839.
Chemometrics |
Stoichiometry |
Nomenclature / Units / Symbols
The definition and symbols for the quantity called "molarity" or "concentration" and for the SI units of this quantity  Gorin, George
An alternative formulation for concentration and the SI units for this quantity.
Gorin, George J. Chem. Educ. 1985, 62, 741.
Nomenclature / Units / Symbols |
Solutions / Solvents
Conversion of standard thermodynamic data to the new standard state pressure  Freeman, Robert D.
Analyzes the changes that will be required to convert standard thermodynamic data from units of atmospheres to the bar.
Freeman, Robert D. J. Chem. Educ. 1985, 62, 681.
Thermodynamics |
Nomenclature / Units / Symbols
The origin and adoption of the Stock system  Kauffman, George B.; Jrgensen, Christian Klixbll
The history and development of the Stock system of inorganic nomenclature.
Kauffman, George B.; Jrgensen, Christian Klixbll J. Chem. Educ. 1985, 62, 243.
Nomenclature / Units / Symbols
Teaching factor-label method without sleight of hand  Garrett, James M.
As an aid in teaching the factor-label method, the author has developed a rather simple card game involving the matching of symbols and colors.
Garrett, James M. J. Chem. Educ. 1983, 60, 962.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols
A novel classification of concentration units  MacCarthy, Patrick
Concentration units can be a source of confusion for students. This article presents a treatment on this topic that may help students understand the differences between these units.
MacCarthy, Patrick J. Chem. Educ. 1983, 60, 187.
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Chem-deck: How to learn to write the formulas of chemical compounds (or lose your shirt)  Sherman, Alan; Sherman, Sharon J.
A game that helps students learn to name compounds and write chemical formulas.
Sherman, Alan; Sherman, Sharon J. J. Chem. Educ. 1980, 57, 503.
Nomenclature / Units / Symbols
Correlating Celsius and Fahrenheit temperatures by the "unit calculus"  Gorin, George
Deriving the mathematical relationship between Celsius and Fahrenheit temperatures.
Gorin, George J. Chem. Educ. 1980, 57, 350.
Nomenclature / Units / Symbols |
Chemometrics
Adopting SI units in introductory chemistry  Davies, William G.; Moore, John W.
Conventions associated with SI units, conversion relationships commonly used in chemistry, and a roadmap method for solving stoichiometry problems.
Davies, William G.; Moore, John W. J. Chem. Educ. 1980, 57, 303.
Nomenclature / Units / Symbols |
Chemometrics
An apologia for accepting at least an approximation to SI  Wright, P. G.
Comments on earlier articles regarding SI units.
Wright, P. G. J. Chem. Educ. 1979, 56, 663.
Nomenclature / Units / Symbols
The chemical equation. Part I: Simple reactions  Kolb, Doris
A chemical equation is often misunderstood by students as an "equation" that is used in chemistry. However, a more accurate description is that it is a concise statement describing a chemical reaction expressed in chemical symbolism.
Kolb, Doris J. Chem. Educ. 1978, 55, 184.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols |
Reactions
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Equations of electromagnetism from CGS to SI  Cvitas, T.; Kallay, N.
A general procedure for changing any CGS formula into SI.
Cvitas, T.; Kallay, N. J. Chem. Educ. 1977, 54, 530.
Nomenclature / Units / Symbols
A convenient notation for powers of ten and logarithms  Oesterreicher, H.
A convenient notation for powers of ten and logarithms that does not require superscripts.
Oesterreicher, H. J. Chem. Educ. 1977, 54, 367.
Nomenclature / Units / Symbols
Names for elements  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
System for naming new, heavy elements.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1975, 52, 583.
Nomenclature / Units / Symbols
Derivatives of oxo acids. IUPAC Publications on Nomenclature. Other International Reports. SI Units  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Summarizes the nomenclature of oxo acid derivatives.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1973, 50, 341.
Nomenclature / Units / Symbols |
Acids / Bases
SI units in physico-chemical calculations  Norris, A. C.
This article demonstrates how the adoption of SI units affects some of the more important physico-chemical calculations found at the undergraduate level.
Norris, A. C. J. Chem. Educ. 1971, 48, 797.
Nomenclature / Units / Symbols |
Chemometrics
The mole again!  Haack, N. H.
Discusses the definition of the mole.
Haack, N. H. J. Chem. Educ. 1970, 47, 324.
Atomic Properties / Structure |
Stoichiometry |
Nomenclature / Units / Symbols
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
Letter to the editor  Brescia, Frank
Calls on instructors not to confuse students with inappropriate definitions of work.
Brescia, Frank J. Chem. Educ. 1967, 44, 771.
Thermodynamics |
Nomenclature / Units / Symbols
Textbooks errors. Miscellanea no. 5  Mysels, Karol J.
Considers inconsistencies in the units involved in thermodynamic expressions, incorrect units given for equivalent conductivity, oscillations in polargraphic measurements, and inconsistencies in dealing with catalysis.
Mysels, Karol J. J. Chem. Educ. 1967, 44, 44.
Nomenclature / Units / Symbols |
Thermodynamics |
Catalysis
A temperature-independent concentration unit  Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr.
Describes a new system of concentration, termed molicity by the authors.
Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr. J. Chem. Educ. 1965, 42, 420.
Nomenclature / Units / Symbols |
Solutions / Solvents
Derivation of equations for the interconversion of concentration units  Mills, Alfred P.
Presents the derivation of equations for the interconversion of concentration units.
Mills, Alfred P. J. Chem. Educ. 1965, 42, 314.
Nomenclature / Units / Symbols
Letters  Goldberg, David E.
The author suggests using the term "continuous chain" rather than "straight" chain so as to reduce confusion regarding the geometry of carbon chains.
Goldberg, David E. J. Chem. Educ. 1962, 39, 319.
Molecular Properties / Structure |
Nomenclature / Units / Symbols
Ultramacro and ultramicro science terms  de Ment, Jack
Proposes a convenient and consistent set of metric prefixes for very large and very small multiples and sub-multiples.
de Ment, Jack J. Chem. Educ. 1962, 39, 587.
Nomenclature / Units / Symbols
Editorially Speaking  Kieffer, William F.
Discussion of the conventions, definitions, and symbols of thermodynamics.
Kieffer, William F. J. Chem. Educ. 1962, 39, 489.
Nomenclature / Units / Symbols |
Thermodynamics
New Prefixes for Units  
Outlines new recommendations for standardized metric prefixes.
J. Chem. Educ. 1960, 37, 85.
Nomenclature / Units / Symbols
Revised inorganic (Stock) nomenclature for the general chemistry student  Brasted, Robert C.
Examines the Stock System as applied to teaching general chemistry and naming binary compounds of nonmetals and metals, complex entities, and oxy-anions.
Brasted, Robert C. J. Chem. Educ. 1958, 35, 136.
Nomenclature / Units / Symbols
Recent developments concerning the signs of electrode potentials  Licht, Truman S.; deBethune, Andre J.
It is the purpose of this paper to review recent developments concerning the signs of electrode potentials, particularly with respect to single electrode potential, half-reaction potential, and half-cell electromotive force.
Licht, Truman S.; deBethune, Andre J. J. Chem. Educ. 1957, 34, 433.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Movable symbols and formulas as a teaching aid  Lippincott, W. T.; Wheaton, Roger
Movable magnetic squares with symbols and formulas printed on them are used as a visual teaching aid involving a variety of fundamental chemistry concepts.
Lippincott, W. T.; Wheaton, Roger J. Chem. Educ. 1956, 33, 15.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Letters to the editor  Weiner, Samuel
Discusses some of the semantic confusions that plague teaching in chemistry.
Weiner, Samuel J. Chem. Educ. 1955, 32, 646.
Nomenclature / Units / Symbols
Letters to the editor  Steinhardt, Ralph G., Jr.
The author replies to a commentary on his earlier article regarding the definition of "spectrum."
Steinhardt, Ralph G., Jr. J. Chem. Educ. 1954, 31, 217.
Spectroscopy |
Nomenclature / Units / Symbols
Letters to the editor  Rosenbaum, E. J.
Commentary on an earlier article regarding the definition of "spectrum."
Rosenbaum, E. J. J. Chem. Educ. 1954, 31, 216.
Spectroscopy |
Nomenclature / Units / Symbols