TIGER

Journal Articles: 64 results
Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?  João C. M. Paiva, Jorge Gonçalves, and Susana Fonseca
This article examines three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?"
Paiva, João C. M.; Gonçalves, Jorge; Fonseca, Susana. J. Chem. Educ. 2008, 85, 1133.
Equilibrium |
Gases |
Thermodynamics
Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment  Kenneth V. Mills, Richard S. Herrick, Louise W. Guilmette, Lisa P. Nestor, Heather Shafer, and Mauri A. Ditzler,
Within the framework of a laboratory-focused, guided-inquiry pedagogy, students discover the Nernst equation, the spontaneity of galvanic cells, concentration cells, and the use of electrochemical data to calculate equilibrium constants.
Mills, Kenneth V.; Herrick, Richard S.; Guilmette, Louise W.; Nestor, Lisa P.; Shafer, Heather;Ditzler, Mauri A. J. Chem. Educ. 2008, 85, 1116.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
A Simplified Model To Predict the Effect of Increasing Atmospheric CO2 on Carbonate Chemistry in the Ocean  Brian J. Bozlee, Maria Janebo, and Ginger Jahn
The chemistry of dissolved inorganic carbon in seawater is reviewed and used to predict the potential effect of rising levels of carbon dioxide in the atmosphere. It is found that calcium carbonate may become unsaturated in cold surface seawater by the year 2100, resulting in the destruction of calcifying organisms such as coral.
Bozlee, Brian J.; Janebo, Maria; Jahn, Ginger. J. Chem. Educ. 2008, 85, 213.
Applications of Chemistry |
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Equilibrium |
Green Chemistry |
Water / Water Chemistry
Using the Science Writing Heuristic To Improve Students' Understanding of General Equilibrium  James A. Rudd, II, Thomas J. Greenbowe, and Brian M. Hand
This study examines the performance of students using the Science Writing Heuristic approach, which facilitates scientific inquiry by structuring the laboratory notebook in a format that guides students to answer directed questions, on lecture exams and a laboratory practical exam on chemical equilibrium.
Rudd, James A., II; Greenbowe, Thomas J.; Hand, Brian M. J. Chem. Educ. 2007, 84, 2007.
Equilibrium |
Learning Theories |
TA Training / Orientation |
Student-Centered Learning
The Use of Limits in an Advanced Placement Chemistry Course  Paul S. Matsumoto, Jonathan Ring, and Jia Li (Lily) Zhu
This article describes the use of limits in topics usually covered in advanced placement or first-year college chemistry. This approach supplements the interpretation of the graph of an equation since it is usually easier to evaluate the limit of a function than to generate its graph.
Matsumoto, Paul S.; Ring, Jonathan; Zhu, Jia Li (Lily). J. Chem. Educ. 2007, 84, 1655.
Acids / Bases |
Equilibrium |
Gases |
Mathematics / Symbolic Mathematics |
Thermodynamics
The Physical Meaning of the Mathematical Formalism Present in Limiting Chemical Equations; Or, How Dilute Is Dilute?  C. Contreras-Ortega, N. Bustamante, J. L. Guevara, C. Portillo, and V. Kesternich
Proposes general mathematical formulations to offer students a better understanding of the real scope of scientific expressions dealing with limiting physical conditions, such as those concerning dilute and concentrated solutions and low and high temperatures and pressures.
Contreras-Ortega, C.; Bustamante, N.; Guevara, J. L.; Portillo, C.; Kesternich, V. J. Chem. Educ. 2007, 84, 788.
Aqueous Solution Chemistry |
Equilibrium |
Gases |
Mathematics / Symbolic Mathematics |
Quantitative Analysis |
Solutions / Solvents
Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction  Joel Tellinghuisen
The conditions under which chemical reactions occur determine which thermodynamic functions are minimized or maximized. This point is illustrated for the formation of ammonia in the ideal gas approximation using a numerical exercise.
Tellinghuisen, Joel. J. Chem. Educ. 2006, 83, 1090.
Gases |
Equilibrium |
Thermodynamics
Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems  Robert M. Hanson and Bridget Michalek
Described here is a short, simple activity that can be used in any high school or college chemistry classroom or lab to explore the way energy is distributed in real chemical systems and as an entry into discussions of the probabilistic nature of entropy.
Hanson, Robert M.; Michalek, Bridget. J. Chem. Educ. 2006, 83, 581.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Equilibria That Shift Left upon Addition of More Reactant  Jeffrey E. Lacy
Most textbook presentations of Le Chtelier's principle in general and physical chemistry do not include a discussion of constant pressure conditions for which addition of a reactant can shift the equilibrium to the left. We propose presentations of isothermal, open systems at constant pressure for both levels of study by using concepts and skills that the respective students already possess. In addition, we derive novel criteria based on the stoichiometry of the reaction that can be used to identify those equilibria that will shift left upon addition of more reactant.
Lacy, Jeffrey E. J. Chem. Educ. 2005, 82, 1192.
Equilibrium |
Mathematics / Symbolic Mathematics |
Thermodynamics
Playing-Card Equilibrium  Robert M. Hanson
A simple hands-on simulation suitable for either classroom use or laboratory investigation involves using a standard deck of playing cards to explore the statistical aspects of equilibrium. Concepts that can be easily demonstrated include fluctuation around a most probable distribution, Le Chtelier's principle, the equilibrium constant, prediction of the equilibrium constant based on probability, and the effect of sample size on equilibrium fluctuations.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 1271.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Equilibrium  Matthew Sandberg and Michael K. Bellamy
Software (applet) to help students visualize what actually happens in an equilibrium system.
Sandberg, Matthew ; Bellamy, Michael K. J. Chem. Educ. 2003, 80, 456.
Equilibrium |
Molecular Modeling |
Molecular Mechanics / Dynamics
The State of Division of Solids and Chemical Equilibria  João C. M. Paiva and Victor M. S. Gil
An experiment and a computer simulation are presented to address a counterintuitive situation often encountered when teaching chemical equilibria. This is prompted by the question "How can the subdivision of a solid reactant affect the reaction rate and not the composition of the equilibrium state?"
Paiva, João C. M.; Gil, Victor M. S. J. Chem. Educ. 2001, 78, 222.
Equilibrium |
Kinetics |
Laboratory Computing / Interfacing
SolEq: Solution Equilibria, Principles and Applications, Release 1
by SolEq Project Team: L. D. Pettit, K. J. Powell, and R. W. Ramette

  Marina C. Koether
29 tutorials with simulation, calculations, and graphs, on solution equilibria.
Koether, Marina C. J. Chem. Educ. 2000, 77, 1414.
Equilibrium |
Solutions / Solvents |
Titration / Volumetric Analysis

Are We Taking Symbolic Language for Granted?   Paul Marais and Faan Jordaan
This study formed part of a broader investigation into the role of language in teaching and learning chemical equilibrium. Students were tested for their understanding of 25 words and five symbols commonly used in connection with chemical equilibrium. This test showed that most of the students had an inadequate grasp of the meaning of all five symbols. It also showed that, on the average, their understanding of symbols was more problematic than their understanding of words.
Marais, Paul; Jordaan, Faan. J. Chem. Educ. 2000, 77, 1355.
Equilibrium |
Nomenclature / Units / Symbols
Graphing Calculator Strategies for Solving Chemical Equilibrium Problems (re J. Chem. Educ. 1999, 76, 632-634) Author Reply  Henry Donato Jr.
Reinforces appropriateness of application of graphing calculator for solving chemical equilibrium problems.
Donato, Henry, Jr. J. Chem. Educ. 2000, 77, 1120.
Aqueous Solution Chemistry |
Equilibrium
Graphing Calculator Strategies for Solving Chemical Equilibrium Problems (re J. Chem. Educ. 1999, 76, 632-634)  Todd P. Silverstein
Questions appropriateness of application of graphing calculator for solving chemical equilibrium problems.
Silverstein, Todd P. J. Chem. Educ. 2000, 77, 1120.
Aqueous Solution Chemistry |
Equilibrium
Determination of Ksp, ΔG0, ΔH0, and ΔS0 for the Dissolution of Calcium Hydroxide in Water: A General Chemistry Experiment  William B. Euler, Louis J. Kirschenbaum, and Ben Ruekberg
This exercise utilizes low-cost, relatively nonhazardous materials presenting few disposal problems. It reinforces the students' understanding of the interrelationship of solubility, Ksp, ΔG0, ΔH0, and ΔS0.
Euler, William B.; Kirschenbaum, Louis J.; Ruekberg, Ben. J. Chem. Educ. 2000, 77, 1039.
Equilibrium |
Thermodynamics |
Titration / Volumetric Analysis
Simulating Dynamic Equilibria: A Class Experiment  John A. Harrison and Paul D. Buckley
A first-order reversible reaction is simulated on an overhead projector using small coins or discs. Results illustrate how dynamic equilibria are established and allow the introduction of the concept of an equilibrium constant. Le Chtelier's principle is illustrated by further simulations.
Harrison, John A.; Buckley, Paul D. J. Chem. Educ. 2000, 77, 1013.
Equilibrium |
Rate Law |
Reactions
Simulations for Teaching Chemical Equilibrium  Penelope A. Huddle, Margaret Dawn White, and Fiona Rogers
This paper outlines a systematic approach to teaching chemical equilibrium using simulation experiments that address most known alternate conceptions in the topic. Graphs drawn using the data from the simulations are identical to those obtained using real experimental data for reactions that go to equilibrium. This allows easy mapping of the analogy to the target.
Huddle, Penelope Ann; White, Margaret Dawn; Rogers, Fiona. J. Chem. Educ. 2000, 77, 920.
Equilibrium |
Learning Theories
Equilibrium: A Teaching/Learning Activity (author's reply)  Wilson, Audrey
Thanks for clarification and suggestions.
Wilson, Audrey J. Chem. Educ. 1999, 76, 900.
Equilibrium |
Rate Law
Equilibrium: A Teaching/Learning Activity  Sadavoy, Lyle; Paiva, Joao C. M.; Gil, Victor M. S.
Clarification and suggestions for improvement.
Sadavoy, Lyle; Paiva, Joao C. M.; Gil, Victor M. S. J. Chem. Educ. 1999, 76, 900.
Equilibrium |
Rate Law
The Arrhenius Equation Revisited (author's reply)  Carroll, Harvey F.
Misleading remarks regarding the Arrhenius equation in some general chemistry texts.
Carroll, Harvey F. J. Chem. Educ. 1999, 76, 899.
Equilibrium |
Rate Law
The Arrhenius Equation Revisited  Logan, S. R.
Addition citation on the implications of the Arrhenius equation.
Logan, S. R. J. Chem. Educ. 1999, 76, 899.
Equilibrium |
Rate Law
Discovering a Change in Equilibrium Constant with Change in Ionic Strength: An Empirical Laboratory Experiment for General Chemistry  Richard J. Stolzberg
Spectrophotometric measurements of absorbance of a solution of Fe3+(aq) and SCN-(aq) treated with different amounts of KNO3 are made to determine Kc for the formation of FeSCN2+(aq). Students observe a regular decrease in the value of Kc as the concentration of added KNO3 is increased.
Stolzberg, Richard J. J. Chem. Educ. 1999, 76, 640.
Equilibrium |
Aqueous Solution Chemistry
Graphing Calculator Strategies for Solving Chemical Equilibrium Problems  Henry Donato Jr.
A general method for finding the roots of polynomial equations using the ubiquitous and inexpensive graphing calculator is presented. It is suggested that important reactions, which are not discussed in introductory chemistry courses because of computational considerations, may now be discussed.
Donato, Henry, Jr. J. Chem. Educ. 1999, 76, 632.
Aqueous Solution Chemistry |
Learning Theories |
Equilibrium
The Complexity of Teaching and Learning Chemical Equilibrium  Louise Tyson, David F. Treagust, and Robert B. Bucat
This paper discusses three key issues relevant to secondary school chemistry teaching. They arise from a study of students' understanding of chemical equilibrium using qualitative and quantitative research methods.
Tyson, Louise; Treagust, David F.; Bucat, Robert B. J. Chem. Educ. 1999, 76, 554.
Equilibrium |
Learning Theories
Equilibrium: A Teaching/Learning Activity  Audrey H. Wilson
This article describes hands-on activities for high-school or undergraduate students designed to clarify important concepts involved in early studies of equilibrium. Concepts included are that at equilibrium, rate of forward reaction = rate of backward reaction; concentrations of both reactants and products remain constant; the equilibrium constant is constant at the same temperature but changes as the temperature changes; and equilibrium may be approached from different starting points.
Wilson, Audrey H. J. Chem. Educ. 1998, 75, 1176.
Equilibrium
"Conceptual Questions" on LeChatelier's Principle  Benjamin P. Huddle
Three "conceptual questions" presented are designed to assess the student's ability to conceptualize chemical equilibrium and to predict the effect of changes made to a system at equilibrium, using LeChatelier's principle, without doing any equilibrium constant calculations.
Huddle, Benjamin P. J. Chem. Educ. 1998, 75, 1175.
Equilibrium
Formation and Dimerization of NO2 A General Chemistry Experiment  April D. Hennis, C. Scott Highberger, and Serge Schreiner*
A general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment readily provides students with data that can be manipulated with a common spreadsheet.
Hennis, April D.; Highberger, C. Scott; Schreiner, Serge. J. Chem. Educ. 1997, 74, 1340.
Gases |
Equilibrium |
Quantitative Analysis |
Stoichiometry
Thermodynamics and Spontaneity  Raymond S. Ochs
Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject.
Ochs, Raymond S. J. Chem. Educ. 1996, 73, 952.
Thermodynamics |
Learning Theories |
Equilibrium
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
Chemical Equilibrium in the General Chemistry Course  Fainzilberg, Vladimir E.; Karp, Stewart
The first chapters on chemical equilibrium in first-year college chemistry texts make an "error" in the solution of certain types of equilibria problems.
Fainzilberg, Vladimir E.; Karp, Stewart J. Chem. Educ. 1994, 71, 769.
Equilibrium |
Kinetics
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
Monitoring self-association of a hydrophobic peptide with high performance liquid chromatography: An undergraduate kinetic experiment using the antibiotic gramicidin A  Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin
The authors propose a kinetic experiment that uses high performance liquid chromatography to determine the rate and equilibrium constants in a very simple manner, and separate the molecular species under study.
Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin J. Chem. Educ. 1992, 69, A113.
HPLC |
Kinetics |
Proteins / Peptides |
Rate Law |
Equilibrium
Chemical equilibrium: I. The thermodynamic equilibrium constant  Gordus, Adon A.
This is the first article in a series of eight that investigates the various assumptions that result in the simplified equilibrium equations found in most introductory texts. In this first article, the author considers the general nature of the constant K, Le Chatelier's principle, and the effect of the temperature on K.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 138.
Thermodynamics |
Equilibrium
Measurements of equilibrium constants of acid-base indicators with a blocktronic colorimeter  Walters, David; Birk, James P.
A computer-interfaced measurement of equilibrium constants of acid-base indicators (methyl orange, methyl red, and phenolphthalein).
Walters, David; Birk, James P. J. Chem. Educ. 1990, 67, A252.
Acids / Bases |
Dyes / Pigments |
Spectroscopy |
Equilibrium |
Laboratory Computing / Interfacing
Calculation of equilibrium constant in esterification reactions  Sarlo, Edward; Svoronos, Paris; Kulas, Patricia
Procedure for measuring the equilibrium constant in esterification reactions.
Sarlo, Edward; Svoronos, Paris; Kulas, Patricia J. Chem. Educ. 1990, 67, 796.
Esters |
Alcohols |
Carboxylic Acids |
Equilibrium
Solving equilibrium constant expressions using spreadsheets  Metz, Clyde; Donato, Henry, Jr.
Description and application of solving equilibrium constant expressions using spreadsheets.
Metz, Clyde; Donato, Henry, Jr. J. Chem. Educ. 1989, 66, A241.
Equilibrium
Tools of the trade   Bruno, Michael J.
High school teachers can never have too many visual aids when teaching chemistry. This author shares some demonstrations in equilibrium that often produce "oohs" and "aaaahs" from his students.
Bruno, Michael J. J. Chem. Educ. 1988, 65, 698.
Equilibrium |
pH
Thermodynamics of the rhodamine B lactone zwitterion equilibrium: An undergraduate laboratory experiment  Hinckley, Daniel A.; Seybold, Paul G.
An experiment to derive thermodynamic values from a thermochromic equilibrium that uses a commercially available dye, attains equilibrium rapidly, and employs a simple, single-beam spectrophotometer.
Hinckley, Daniel A.; Seybold, Paul G. J. Chem. Educ. 1987, 64, 362.
Thermodynamics |
Dyes / Pigments |
Spectroscopy |
Equilibrium
Le Châtelier's Principle  Knox, Kerro
Question involving effect of increasing the pressure on the N2 + 3H2 <=> 2NH3 system.
Knox, Kerro J. Chem. Educ. 1985, 62, 863.
Equilibrium |
Gases
Le Châtelier's principle: the effect of temperature on the solubility of solids in liquids  Brice, L. K.
The purpose of this article is to provide a rigorous but straightforward thermodynamic treatment of the temperature dependence of solubility of solids in liquids that is suitable for presentation at the undergraduate level. The present discussion may suggest how to approach the qualitative aspects of the subject for freshman.
Brice, L. K. J. Chem. Educ. 1983, 60, 387.
Thermodynamics |
Liquids |
Solids |
Chemometrics |
Equilibrium
Chemical equilibrium  Mickey, Charles D.
The law of mass action, the equilibrium constant, and the effect of temperature, concentration, and pressure on equilibrium.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 801.
Equilibrium |
Catalysis
Le Châtelier's principle: A reexamination and method of graphic illustration  Treptow, Richard S.
Le Châtelier's development of the principle that bears his name, and a rephrasing of that principle to make it technically and historically accurate.
Treptow, Richard S. J. Chem. Educ. 1980, 57, 417.
Equilibrium
On the misuse of Le Châtelier's principle for the prediction of the temperature dependence of the solubility of salts  Bodner, George M.
Explores why Le Châtelier's principle often fails to predict the temperature dependence of the solubility of salts.
Bodner, George M. J. Chem. Educ. 1980, 57, 117.
Equilibrium |
Precipitation / Solubility |
Solutions / Solvents |
Aqueous Solution Chemistry
The temperature dependence of the equilibrium constant  Burness, James H.
This exam question tests a student's ability to derive the temperature dependence of an equilibrium constant not by qualitatively applying Le Chatelier's principle, but by understanding the relationship between the kinetics of the equation and the value of Keq.
Burness, James H. J. Chem. Educ. 1979, 56, 395.
Equilibrium |
Kinetics
An apparent contradiction in the application of the principle of Le Chtelier  Mellon, E. K.
Unless some care is exercised, the application of free energy concepts in situations where marked temperature changes occur can lead to apparent contradictions like the one described in this paper.
Mellon, E. K. J. Chem. Educ. 1979, 56, 380.
Equilibrium |
Thermodynamics
On mole fractions in equilibrium constants  Delaney, C. M.; Nash, Leonard K.
Proposes a hybrid equilibrium constant for use in introductory chemistry courses.
Delaney, C. M.; Nash, Leonard K. J. Chem. Educ. 1977, 54, 151.
Equilibrium |
Stoichiometry |
Aqueous Solution Chemistry |
Solutions / Solvents
A dynamic lecture demonstration of dynamic equilibrium - The BG system  Battino, Rubin
This demonstration uses students as atoms and molecules.
Battino, Rubin J. Chem. Educ. 1975, 52, 55.
Equilibrium
Lecture experiment: A quantitative illustration of LeChatelier's principle  Nelson, D. L.; Ginns, E. I.; Richtol, H. H.; Reeves, R. R.
A short experiment involving the popular gaseous nitrogen dioxide system has been developed into a lecture demonstration which quantitatively illustrates the behavior of a homogeneous gas-phase equilibrium under conditions of varying temperature and pressure.
Nelson, D. L.; Ginns, E. I.; Richtol, H. H.; Reeves, R. R. J. Chem. Educ. 1973, 50, 721.
Equilibrium |
Gases
Passage of fruit flies through a hole. A model for a reversible chemical reaction  Runquist, Elizabeth A.; Runquist, Olaf
The passage of fruit flies through a single orifice provides an excellent model for illustrating the principles of equilibrium and chemical dynamics; the results are found to be temperature dependent and reproducible.
Runquist, Elizabeth A.; Runquist, Olaf J. Chem. Educ. 1972, 49, 534.
Reactions |
Equilibrium |
Kinetics |
Rate Law
The design and use of an equilibrium machine  Alden, Robert T.; Schmuckler, Joseph S.
An operating model that can be used to determine quantitatively equilibrium shifts when demonstrating Le Chatelier's Principle and relates to molecular level considerations and the probabilistic nature of equilibrium.
Alden, Robert T.; Schmuckler, Joseph S. J. Chem. Educ. 1972, 49, 509.
Equilibrium
The law of mass action  Berline, Steven; Bricker, Clark
It is the purpose of this paper to present a derivation of the Law of Mass Action that should have meaning and could be used at an elementary level.
Berline, Steven; Bricker, Clark J. Chem. Educ. 1969, 46, 499.
Equilibrium |
Rate Law |
Kinetics
Rapid graphical method for determining formation constants  Christian, Sherril D.
This paper presents a rapid graphical method for determining formation constants and absorptivities of 1:1 complexes in dilute solution.
Christian, Sherril D. J. Chem. Educ. 1968, 45, 713.
Equilibrium
Principles of chemical equilibrium (Morris, Kelso B.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1966, 43, 110.
Equilibrium |
Enrichment / Review Materials
Solvent effect on the keto-enol equilibrium of acetoacetic ester  Lockwood, Karl L.
The purpose of the investigation is to introduce students to some of the factors that influence an equilibrium constant.
Lockwood, Karl L. J. Chem. Educ. 1965, 42, 481.
Solutions / Solvents |
Equilibrium
KineticsEarly and often  Campbell, J. A.
Describes an approach to investigating kinetics and its application to the "blue bottle" experiment.
Campbell, J. A. J. Chem. Educ. 1963, 40, 578.
Kinetics |
Equilibrium |
Mechanisms of Reactions
Heterogeneous equilibria in general chemistry  Grotz, Leonard C.
Presents suggestions for approaching the subject of heterogeneous equilibria in general chemistry.
Grotz, Leonard C. J. Chem. Educ. 1963, 40, 479.
Equilibrium |
Kinetics
Temperature dependence of equilibrium: A first experiment in general chemistry  Mahan, Bruce H.
This experiment uses cooling curves to derive the expression for the temperature dependence of the equilibrium constant.
Mahan, Bruce H. J. Chem. Educ. 1963, 40, 293.
Equilibrium |
Thermodynamics
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
Chemical equilibrium: The hydrogenation of benzene  Kokes, R. J.; Dorfman, M. K.; Mathia, T.
This procedure examines the reversible reaction between benzene and hydrogen, forming cyclohexane, in the presence of a metal catalyst.
Kokes, R. J.; Dorfman, M. K.; Mathia, T. J. Chem. Educ. 1962, 39, 91.
Reactions |
Aromatic Compounds |
Equilibrium |
Catalysis
Potentiometric measurements of equilibria: In general chemistry laboratory  Chesick, J. P.; Patterson, Andrew, Jr.
The authors describe an experiment in which the solubility product of silver chloride, the ionization constant of the silver-ammonia complex, and the ionization constant of acetic acid can be determined with one afternoon of work.
Chesick, J. P.; Patterson, Andrew, Jr. J. Chem. Educ. 1959, 36, 496.
Electrochemistry |
Equilibrium |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Acids / Bases
Textbook errors: Guest column. XVI: The vapor pressure of hydrated cupric sulfate  Logan, Thomas S.
Examines variability in the values of pressures of water vapor in equilibrium with pairs of cupric sulfate in hydrates quoted in the literature and texts.
Logan, Thomas S. J. Chem. Educ. 1958, 35, 148.
Phases / Phase Transitions / Diagrams |
Equilibrium
Le Châtelier's principle and the equilibrium constant  Miller, Arild J.
Many students of chemistry have difficulty in understanding how the position of equilibrium in a gaseous reaction can change when the pressure is altered, in accordance with Le Châtelier's principle, without causing a corresponding variation in the equilibrium constant.
Miller, Arild J. J. Chem. Educ. 1954, 31, 455.
Equilibrium |
Reactions |
Gases