TIGER

Journal Articles: 100 results
Diamagnetic Corrections and Pascal's Constants  Gordon A. Bain and John F. Berry
This article presents an explanation for the origin of diamagnetic correction factors, comprehensive tables of diamagnetic constants and their application to calculate diamagnetic susceptibility, and a simple method for estimating the correct order of magnitude for the diamagnetic correction for any given compound.
Bain, Gordon A.; Berry, John F. J. Chem. Educ. 2008, 85, 532.
Laboratory Computing / Interfacing |
Magnetic Properties |
Molecular Properties / Structure |
Physical Properties |
Transition Elements
Concept Maps for General Chemistry   Boyd L. Earl
Two concept maps have been developed to represent the organization of the material in a first-semester general chemistry course. By providing these maps to students and referring to them in class, it is hoped that the instructor can assist students in maintaining a grasp of the "big picture" during the progress of the course.
Earl, Boyd L. J. Chem. Educ. 2007, 84, 1788.
Atomic Properties / Structure |
Gases |
Molecular Properties / Structure |
Stoichiometry |
Periodicity / Periodic Table
Origin of the Formulas of Dihydrogen and Other Simple Molecules  Andrew Williams
The logic and experimental data are described with which chemists originally deduced the formulas of fundamental substances such as H2, H2O, Cl2, NH3, CH4, and HCl. It is argued that high school and first-year undergraduate students would gain substantially from exposure to this process.
Williams, Andrew. J. Chem. Educ. 2007, 84, 1779.
Enrichment / Review Materials |
Molecular Properties / Structure
Pre-Service Teacher as Researcher: The Value of Inquiry in Learning Science  Janice M. Hohloch, Nathaniel Grove, and Stacey Lowery Bretz
An action research project to reform a chemistry course required of elementary and middle childhood pre-service teachers incorporated a hands-on approach to learning chemistry, modeled teaching science through inquiry, and emphasized the value of research experience.
Hohloch, Janice M.; Grove, Nathaniel; Bretz, Stacey Lowery. J. Chem. Educ. 2007, 84, 1530.
Chromatography |
Molecular Properties / Structure |
Nonmajor Courses |
Professional Development |
Undergraduate Research |
Student-Centered Learning |
Standards National / State
Teaching Mathematics to Chemistry Students with Symbolic Computation  J. F. Ogilvie and M. B. Monagan
The authors explain how the use of mathematical software improves the teaching and understanding of mathematics to and by chemistry students while greatly expanding their abilities to solve realistic chemical problems.
Ogilvie, J. F.; Monagan, M. B. J. Chem. Educ. 2007, 84, 889.
Chemometrics |
Computational Chemistry |
Fourier Transform Techniques |
Mathematics / Symbolic Mathematics |
Nomenclature / Units / Symbols
A2: Element or Compound?  Marilyne Stains and Vicente Talanquer
Particulate questions are used to investigate the mental association between the concepts of molecule and compound in chemistry students with different levels of academic preparation. A significant proportion of students misclassify molecular elements as chemical compounds, and this association is stronger in students with higher levels of preparation.
Stains, Marilyne; Talanquer, Vicente. J. Chem. Educ. 2007, 84, 880.
Molecular Properties / Structure
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
Classifying Matter: A Physical Model Using Paper Clips  Bob Blake, Lynn Hogue, and Jerry L. Sarquis
By using colored paper clips, students can represent pure substances, mixtures, elements, and compounds and then discuss their similarities and differences. This model is advantageous for the beginning student who would not know enough about the detailed composition of simple materials like milk, brass, sand, and air to classify them properly.
Blake, Bob; Hogue, Lynn; Sarquis, Jerry L. J. Chem. Educ. 2006, 83, 1317.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Solids |
Student-Centered Learning
From "Greasy Chemistry" to "Macromolecule": Thoughts on the Historical Development of the Concept of a Macromolecule  Pedro J. Bernal
This paper presents a narrative about the historical development of the concept of a macromolecule. It does so to illustrate how the history of science might be used as a pedagogical tool to teach science, particularly to non-majors.
Bernal, Pedro J. J. Chem. Educ. 2006, 83, 870.
Colloids |
Nonmajor Courses |
Polymerization |
Molecular Properties / Structure |
Physical Properties
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
Revisiting Molar Mass, Atomic Mass, and Mass Number: Organizing, Integrating, and Sequencing Fundamental Chemical Concepts  Stephen DeMeo
It is often confusing for introductory chemistry students to differentiate between molar mass, atomic mass, and mass number as well as to conceptually understand these ideas beyond a surface level. One way to improve understanding is to integrate the concepts, articulate their relationships, and present them in a meaningful sequence.
DeMeo, Stephen. J. Chem. Educ. 2006, 83, 617.
Descriptive Chemistry |
Enrichment / Review Materials |
Nomenclature / Units / Symbols |
Physical Properties
Nomenclature Made Practical: Student Discovery of the Nomenclature Rules  Michael C. Wirtz, Joan Kaufmann, and Gary Hawley
Presents a method to teach chemical nomenclature to students in an introductory chemistry course that utilizes the discovery-learning model. Inorganic compounds are grouped into four categories and introduced through separate activities interspersed throughout the first semester to provide context and avoid confronting the student with all of the nomenclature rules at once.
Wirtz, Michael C.; Kaufmann, Joan; Hawley, Gary. J. Chem. Educ. 2006, 83, 595.
Nomenclature / Units / Symbols |
Nonmetals |
Student-Centered Learning
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Empirical Formulas and the Solid State: A Proposal  William B. Jensen
This brief article calls attention to the failure of most introductory textbooks to point out explicitly the fact that nonmolecular solids do not have molecular formulas and suggests some practical remedies for improving textbook coverage of this subject. The inadequacies of the terms "empirical formula" and "molecular formula" are also discussed, and the terms "relative compositional formula" and "absolute compositional formula" are proposed as more appropriate alternatives.
Jensen, William B. J. Chem. Educ. 2004, 81, 1772.
Solid State Chemistry |
Solids |
Stoichiometry |
Nomenclature / Units / Symbols
How Many Digits Should We Use in Formula or Molar Mass Calculations?  Christer Svensson
This article addresses the question often asked by students, "How many digits should I use when calculating the formula or molar mass of a substance?
Svensson, Christer. J. Chem. Educ. 2004, 81, 827.
Molecular Properties / Structure |
Learning Theories
The Singlet States of Molecular Oxygen   Jean-Pierre Puttemans and Georges Jannes
Although the purpose of the article The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory is an analysis of the two-moleculesone-photon absorption spectrum of oxygen, it nevertheless assigns arrangements of the electrons in an energy diagram to the two singlet states of molecular oxygen which do not seem to be correct in our opinion.
Puttemans, Jean-Pierre; Jannes, Georges. J. Chem. Educ. 2004, 81, 639.
Molecular Properties / Structure |
MO Theory |
UV-Vis Spectroscopy
A Program of Computational Chemistry Exercises for the First-Semester General Chemistry Course  Scott E. Feller, Richard F. Dallinger, and Paul Caylor McKinney
A series of 13 molecular modeling exercises designed for the first-semester general chemistry course is described. The modeling exercises, which are used as both prelecture explorations and postlecture problems, increase in difficulty and in student independence.
Feller, Scott E.; Dallinger, Richard F.; McKinney, Paul Caylor. J. Chem. Educ. 2004, 81, 283.
Atomic Properties / Structure |
Computational Chemistry |
Molecular Modeling |
Molecular Properties / Structure
Chemistry Perfumes Your Daily Life  Anne-Dominique Fortineau
This article gives a brief history of perfumery.
Fortineau, Anne-Dominique. J. Chem. Educ. 2004, 81, 45.
Consumer Chemistry |
Natural Products |
Applications of Chemistry |
Molecular Properties / Structure
Purple or Colorless—Which Way Up? An Entertaining Solubility Demonstration  Trevor M. Kitson
Discrepant demonstration involving immiscible mixture of water colored with potassium permanganate and hexane.
Kitson, Trevor M. J. Chem. Educ. 2003, 80, 892.
Aqueous Solution Chemistry |
Solutions / Solvents |
UV-Vis Spectroscopy |
Noncovalent Interactions |
Molecular Properties / Structure |
Physical Properties
The Name Game: Learning the Connectivity between the Concepts  Marina C. Koether
Game in which students review words (names of elements and compounds, instrumentation, types of reactions) using an ice-breaker-type activity; each student given a word that they can't see but everyone else can; must learn their name by asking as few yes-no questions as possible.
Koether, Marina C. J. Chem. Educ. 2003, 80, 421.
Instrumental Methods |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Find the Symbols of Elements Using a Letter Matrix Puzzle  V. D. Kelkar
Letter matrix puzzle using chemical symbols.
Kelkar, V. D. J. Chem. Educ. 2003, 80, 411.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
"Dishing Out" Stereochemical Principles  Harold Hart
Demonstrating the concepts of chiral centers and enantiomers using plastic dishes.
Hart, Harold. J. Chem. Educ. 2001, 78, 1632.
Chirality / Optical Activity |
Molecular Modeling |
Stereochemistry |
Molecular Properties / Structure |
Enantiomers
The Role of Lewis Structures in Teaching Covalent Bonding  S. R. Logan
Difficulties with the Lewis theory of covalent bonding and upgrading it to the Molecular Orbital theory.
Logan, S. R. J. Chem. Educ. 2001, 78, 1457.
Covalent Bonding |
MO Theory |
Nonmajor Courses |
Learning Theories |
Lewis Structures |
Molecular Properties / Structure
No, the Molecular Mass of Bromobenzene Is Not 157 amu: An Exercise in Mass Spectrometry and Isotopes for Early General Chemistry  Steven M. Schildcrout
Even with no background in bonding and structure, students can successfully interpret the output of a modern research instrument. They learn to identify an isotope pattern, assign chemical formulas to ions giving mass spectral peaks, calculate an average atomic weight (for bromine) from measured isotopic abundances, and write balanced equations for ion fragmentation reactions.
Schildcrout, Steven M. J. Chem. Educ. 2000, 77, 1433.
Isotopes |
Mass Spectrometry |
Atomic Properties / Structure |
Molecular Properties / Structure
Classroom Nomenclature Games--BINGO  Thomas D. Crute
The use of games in the chemistry classroom can provide instruction, feedback, practice, and fun. A modification of a BINGO game to chemical nomenclature and a specific application to alkanes are described. Tips on preparation of materials, and suggested variations including inorganic nomenclature are presented.
Crute, Thomas D. J. Chem. Educ. 2000, 77, 481.
Learning Theories |
Nomenclature / Units / Symbols |
Nonmajor Courses
Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?  Sam H. Leung
This article provides a brief survey of the origins of the common names of some amino acids, aromatic compounds, and carboxylic acids.
Leung, Sam H. J. Chem. Educ. 2000, 77, 48.
Amino Acids |
Aromatic Compounds |
Nomenclature / Units / Symbols |
Carboxylic Acids
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
Using Games To Teach Chemistry. 2. CHeMoVEr Board Game  Jeanne V. Russell
A board game similar to Sorry or Parcheesi was developed. Students must answer chemistry questions correctly to move their game piece around the board. Card decks contain questions on balancing equations, identifying the types of equations, and predicting products from given reactants.
Russell, Jeanne V. J. Chem. Educ. 1999, 76, 487.
Stoichiometry |
Nomenclature / Units / Symbols
Cut-Out Molecular Models  Silva, Ana Luisa; Fernandes, Carla; Wasterlain, Olivier; Costa, Sandra; Mendes, Ana Maria.
Suggestions for improvement to the original demonstration.
Silva, Ana Luisa; Fernandes, Carla; Wasterlain, Olivier; Costa, Sandra; Mendes, Ana Maria. J. Chem. Educ. 1999, 76, 28.
Molecular Modeling |
Molecular Properties / Structure |
Stoichiometry
Simplified Lewis Structure Drawing for Nonscience Majors  Barnabe B. Miburo
Lewis structures are drawn using a simplified novel method with the following features: 1) the atoms used are brought in carrying all their valence electrons; 2) bonds are created by pairing up valence electrons between the central atoms and peripheric atoms; 3) anions are formed by addition of electrons to single electrons on appropriate atoms, while cations are formed by removal of single electrons.
Miburo, Barnabe B. J. Chem. Educ. 1998, 75, 317.
Learning Theories |
Lewis Structures |
Nonmajor Courses |
Molecular Properties / Structure
A Note on the Term "Chalcogen"  William B. Jensen
It is argued that the best translation of the term "chalcogen" is "ore former." It is further suggested that the term chalcogenide should be replaced with the term chalcide in order to maintain a parallelism with the terms halogen and halide.
Jensen, William B. J. Chem. Educ. 1997, 74, 1063.
Nomenclature / Units / Symbols |
Periodicity / Periodic Table |
Descriptive Chemistry
Atomic and Molecular Structure in Chemical Education: A Critical Analysis from Various Perspectives of Science Education  Georgios Tsaparlis
The perspectives employed in this paper are (i) the Piagetian developmental perspective, (ii) the Ausbelian theory of meaningful learning, (iii) the information processing theory, and (iv) the alternative conceptions movement. The implications for teaching and curriculums are discussed.
Tsaparlis, Georgios. J. Chem. Educ. 1997, 74, 922.
Learning Theories |
Atomic Properties / Structure |
Molecular Properties / Structure |
Constructivism
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
Cubic and Related Structures of Many Types of Crystals: A Single Illuminated Model  Rich, Ronald L.
Instructions for constructing a three-dimensional, lighted model to illustrate the positions of atoms in many different crystalline structures.
Rich, Ronald L. J. Chem. Educ. 1995, 72, 172.
Crystals / Crystallography |
Laboratory Equipment / Apparatus |
Geochemistry |
Molecular Modeling |
Molecular Properties / Structure
Chemistry Navigator  Kotz, John C.; Young, Susan
Chemistry Navigator is a hyperbook-database of information in the form of descriptive text, numerical values of properties, full color photos of chemicals and reactions, three dimensional molecular structures, QuickTime animations of structural features, and graphs showing periodic trends, relative elemental abundances, and other properties.
Kotz, John C.; Young, Susan J. Chem. Educ. 1994, 71, 941.
Reactions |
Molecular Properties / Structure |
Periodicity / Periodic Table
On Using Incomplete Theories as Cataloging Schemes: Aufbau, Abbau, and VSEPR  Tykodi, R. J.
How to restructure as cataloging schemes the aufbau and abbau procedures for obtaining the ground-state electronic structures of atoms and monatomic ions.
Tykodi, R. J. J. Chem. Educ. 1994, 71, 273.
VSEPR Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Properties / Structure
Mole and Chemical Amount: A Discussion of the Fundamental Measurements of Chemistry  Gorin, George
Demonstrates that the mole is little different from other units of measurement.
Gorin, George J. Chem. Educ. 1994, 71, 114.
Nomenclature / Units / Symbols
Misusing "molecular"  Goldberg, David E.
In discussing net ionic equations, the authors of many general chemistry textbooks call the overall equation a "molecular equation", which is misleading at best and incorrect at worst.
Goldberg, David E. J. Chem. Educ. 1992, 69, 776.
Nomenclature / Units / Symbols
Teaching inorganic nomenclature: A systematic approach.  Lind, Gerhard.
Convenient flow charts for naming inorganic compounds.
Lind, Gerhard. J. Chem. Educ. 1992, 69, 613.
Nomenclature / Units / Symbols
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Chemical Nomenclature and Balancing Equations (Bergwall Educational Software)  Kling, Timothy A.
These computer programs deal exclusively with the subjects of inorganic nomenclature and balancing simple equations.
Kling, Timothy A. J. Chem. Educ. 1989, 66, A41.
Nomenclature / Units / Symbols
Fundamental concepts in the teaching of chemistry: Part 1. The two worlds of the chemist make nomenclature manageable  Loeffler, Paul A.
A proposal to precisely define and consistently employ the terms chemical substance and chemical species; the article uses the classification of matter and nomenclature as examples of the scheme's application.
Loeffler, Paul A. J. Chem. Educ. 1989, 66, 928.
Nomenclature / Units / Symbols |
Learning Theories
Teaching a model for writing Lewis structures  Pardo, Juan Quilez
A general procedure for the representation of Lewis structures.
Pardo, Juan Quilez J. Chem. Educ. 1989, 66, 456.
Lewis Structures |
Molecular Properties / Structure |
Molecular Modeling
How to use crystallographic information in teaching first-year chemistry   Bevan, D. J. M.; Taylor, M. R.; Rossi, M.
These authors describe material appropriate for inclusion in a first-year chemistry lecture course. This article stresses how basic chemical principles have been derived from crystallographic results. A potential instructor need not have crystallographic training to incorporate these lectures.
Bevan, D. J. M.; Taylor, M. R.; Rossi, M. J. Chem. Educ. 1988, 65, 477.
X-ray Crystallography |
Crystals / Crystallography |
Molecular Properties / Structure
Writing Chemical Formulas, Review I (Ross, Don)  Pavlovich, Joseph M.
Program to give students practice in writing chemical formulas and to facilitate the understanding of balancing positive and negative charges in a chemical formula.
Pavlovich, Joseph M. J. Chem. Educ. 1987, 64, A88.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
The chemical bond  DeKock, Roger L.
Overview of the chemical bond; considers ionic bonds, covalent bonds, Lewis electron dot structures, polar molecules and hydrogen bonds, and bonding in solid-state elements.
DeKock, Roger L. J. Chem. Educ. 1987, 64, 934.
Ionic Bonding |
Covalent Bonding |
Hydrogen Bonding |
Solid State Chemistry |
Lewis Structures |
Molecular Properties / Structure
Allotropes and polymorphs  Sharma, B. D.
Definitions and examples of allotropes and polymorphs.
Sharma, B. D. J. Chem. Educ. 1987, 64, 404.
Nomenclature / Units / Symbols |
Crystals / Crystallography |
Molecular Properties / Structure
FACES (features associated with chemical entities): II. Hydrocarbon isomers and their graphs  Larsen, Russell D.
The FACES program is modified in order to be able to display the structural features of compounds.
Larsen, Russell D. J. Chem. Educ. 1986, 63, 1067.
Molecular Properties / Structure
Where did that number come from?   DeLorenzo, Ronald
With more careful labeling and handling of numbers, instructors can reduce the confusion students sometimes feel when watching problems being solved by the instructor on the board.
DeLorenzo, Ronald J. Chem. Educ. 1986, 63, 514.
Chemometrics |
Nomenclature / Units / Symbols
Elemental etymology: What's in a name?  Ball, David W.
Summarizes patterns to be found among the origins of the names of the elements.
Ball, David W. J. Chem. Educ. 1985, 62, 787.
Nomenclature / Units / Symbols
Nuclear synthesis and identification of new elements  Seaborg, Glenn T.
Review of descriptive terms, nuclear reactions, radioactive decay modes, and experimental methods in nuclear chemistry.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 392.
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
The origin and adoption of the Stock system  Kauffman, George B.; Jrgensen, Christian Klixbll
The history and development of the Stock system of inorganic nomenclature.
Kauffman, George B.; Jrgensen, Christian Klixbll J. Chem. Educ. 1985, 62, 243.
Nomenclature / Units / Symbols
A LAP on moles: Teaching an important concept  Ihde, John
The objective of the Learning Activity Packet on moles include understanding the basic concept of the mole as a chemical unit, knowing the relationships between the mole and the atomic weights in the periodic table, and being able to solve basic conversion problems involving grams, moles, atoms, and molecules. [Debut]
Ihde, John J. Chem. Educ. 1985, 62, 58.
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics |
Atomic Properties / Structure |
Molecular Properties / Structure |
Periodicity / Periodic Table
Another procedure for writing Lewis structures  Clark, Thomas J.
A simple procedure for writing a correct Lewis structure for a molecule or ion containing only s- and p-block elements.
Clark, Thomas J. J. Chem. Educ. 1984, 61, 100.
Lewis Structures |
Molecular Properties / Structure
Numbers in chemical names  Fernelius, W. Conard
Discusses the various ways that numbers are used in the formulas and names of chemical compounds.
Fernelius, W. Conard J. Chem. Educ. 1982, 59, 964.
Nomenclature / Units / Symbols |
Oxidation State
Some simple AX and AX2 structures  Wells, A. F.
Examines three of the simplest crystalline structures, that of sodium chloride, rutile, and fluorite.
Wells, A. F. J. Chem. Educ. 1982, 59, 630.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
Optical Activity  Mickey, Charles D.
Historical background of stereoisomerism, the properties of light, the principles of a polarimeter, and optically active compounds.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 442.
Stereochemistry |
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers
Molecular Geometry  Mickey, Charles D.
Methods for determining molecular geometry and the application of VSEPR theory to real molecules.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 210.
Molecular Properties / Structure |
VSEPR Theory
Empirical formulas  Ryan, Dennis P.
This question forces one to duplicate the line of reasoning used by Dalton in his initial formulation of atomic weights; it tests for the ability to deduce atomic sizes and to calculate empirical formulas.
Ryan, Dennis P. J. Chem. Educ. 1979, 56, 528.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Periodicity / Periodic Table
The ambit of chemistry  Vitz, Edward W.
Proposal to revise the standard definition of chemistry to one that focusses on atoms and molecules rather than simply matter.
Vitz, Edward W. J. Chem. Educ. 1979, 56, 327.
Nomenclature / Units / Symbols
The chemical equation. Part I: Simple reactions  Kolb, Doris
A chemical equation is often misunderstood by students as an "equation" that is used in chemistry. However, a more accurate description is that it is a concise statement describing a chemical reaction expressed in chemical symbolism.
Kolb, Doris J. Chem. Educ. 1978, 55, 184.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols |
Reactions
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Drinking-straw polyhedral models in structural chemistry  Mak, Thomas C. W.; Lam, C. N.; Lau, O. W.
Instructions for constructing a variety of molecular and crystal structures based on various ways of packing regular and semi-regular polyhedra made from plastic drinking straws.
Mak, Thomas C. W.; Lam, C. N.; Lau, O. W. J. Chem. Educ. 1977, 54, 438.
Molecular Properties / Structure |
Molecular Modeling
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
Names for elements  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
System for naming new, heavy elements.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1975, 52, 583.
Nomenclature / Units / Symbols
The paramagnetism of O2  Lethbridge, J. W.; Davies, M. B.
A simple but more spectacular demonstration of the paramagnetism of O2.
Lethbridge, J. W.; Davies, M. B. J. Chem. Educ. 1973, 50, 656.
Magnetic Properties |
Molecular Properties / Structure
Electron affinity. The zeroth ionization potential  Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C.
It is the purpose of this article to present the merits of adopting the terminology zeroth ionization potential to describe the energy change that occurs when a gaseous anion loses an electron.
Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C. J. Chem. Educ. 1973, 50, 487.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Derivatives of oxo acids. IUPAC Publications on Nomenclature. Other International Reports. SI Units  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Summarizes the nomenclature of oxo acid derivatives.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1973, 50, 341.
Nomenclature / Units / Symbols |
Acids / Bases
Visualization of molecular orbitals. Formaldehyde  Olcott, Richard J.
Using a computer to generate three dimensional charge density distributions of the formaldehyde molecule.
Olcott, Richard J. J. Chem. Educ. 1972, 49, 614.
Aldehydes / Ketones |
Molecular Modeling |
Molecular Properties / Structure
Why is the oxygen in water negative?  Liebman, Joel F.
Oxygen in water is negative because a negative charge, unlike a positive, can be stabilized using ground state ionic resonance structures.
Liebman, Joel F. J. Chem. Educ. 1972, 49, 415.
Water / Water Chemistry |
Molecular Properties / Structure |
Oxidation State
Numbers in nomenclature  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Examines how multiplying affixes are used, particularly in inorganic nomenclature.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 49.
Nomenclature / Units / Symbols
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Strong, Laurence E.
(1) What evidence, understandable and acceptable to students, do most teachers cite to describe the transfer of charge from one electrode to another in the direct current electrolysis of an electrolyte solution? (2) What is a compound? - answer by Strong. (3) What is a molecule? - answer by Strong.
Young, J. A.; Malik, J. G.; Strong, Laurence E. J. Chem. Educ. 1970, 47, 523.
Electrochemistry |
Aqueous Solution Chemistry |
Stoichiometry |
Molecular Properties / Structure
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
LTE. Normalization of MO's  Hecht, Charles E.
The author suggests that the cited computer program be modified to normalize molecular orbitals.
Hecht, Charles E. J. Chem. Educ. 1969, 46, 700.
MO Theory |
Molecular Properties / Structure
Construction and use of atomic and molecular models (Bassow, H.)  Martins, George

Martins, George J. Chem. Educ. 1969, 46, 623.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Structure units: Aids in the interpretation of chemical reactions  Strong, Laurence E.
the proposal to define structure units as generators of the various properties of a substance has a considerable advantage over the usual definition of a structure unit as the endpoint of some prescribed scheme of subdivision.
Strong, Laurence E. J. Chem. Educ. 1968, 45, 51.
Learning Theories |
Molecular Properties / Structure |
Solids |
Liquids |
Gases
General chemistry exercise using atomic and molecular orbital models  Walker, Ruth A.
Styrofoam balls and pipecleaners are used to construct models designed to convey an understanding of the three-dimensionality of the electron distribution in the ground state atom and the effect of bonding on this distribution.
Walker, Ruth A. J. Chem. Educ. 1965, 42, 672.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
The architecture of molecules (Pauling, Linus; Hayward, Roger)  Kieffer, William F.

Kieffer, William F. J. Chem. Educ. 1965, 42, 579.
Molecular Properties / Structure
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Lexicon of international and national units (Clason, W. E.)  Kieffer, William F.

Kieffer, William F. J. Chem. Educ. 1964, 41, 519.
Nomenclature / Units / Symbols
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Chemical bonding and the geometry of molecules (Ryschkewitsch, George E.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1963, 40, 441.
Molecular Properties / Structure |
Covalent Bonding
The valence-shell electron-pair repulsion (VSEPR) theory of directed valency  Gillespie, R. J.
Presents the valence-shell electron-pair repulsion (VSEPR) theory of directed valency and its use to determine molecular shapes, bond angles, and bond lengths.
Gillespie, R. J. J. Chem. Educ. 1963, 40, 295.
VSEPR Theory |
Molecular Properties / Structure |
Covalent Bonding
Would Mendeleev have predicted the existence of XeF4?  Ward, Roland
The author suggests that a contemporary Mendeleev might have used the concept of molecular orbitals to predict the existence of XeF4.
Ward, Roland J. Chem. Educ. 1963, 40, 277.
Nonmetals |
Molecular Properties / Structure
Intrinsic bond energies  Siegel, S.; Siegel, B.
Examines intrinsic bond energies drawn from spectroscopic data and focusses on beryllium hydride as an example.
Siegel, S.; Siegel, B. J. Chem. Educ. 1963, 40, 143.
Covalent Bonding |
Molecular Properties / Structure
Non-existent compounds  Dasent, W. E.
The purpose of this review is to examine compounds that do not violate the rules of valence but which are nevertheless characterized by a high degree of instability, and to consider why these structures are unstable or non-existent.
Dasent, W. E. J. Chem. Educ. 1963, 40, 130.
Molecular Properties / Structure |
Covalent Bonding
Geometry in the beginning chemistry course  Strong, Laurence E.; Clapp, L. B.; Edwards, J. O.
Presents a series of common general chemistry questions and their answers based on a structural analysis.
Strong, Laurence E.; Clapp, L. B.; Edwards, J. O. J. Chem. Educ. 1961, 38, 530.
Molecular Properties / Structure
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Models for demonstrating electronegativity and "partial charge"  Sanderson, R. T.
Describes a three-dimensional set of atomic models arranged periodically to illustrate trend in electronegativity and the use of molecular models to illustrate important concepts in general chemistry.
Sanderson, R. T. J. Chem. Educ. 1959, 36, 507.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Modeling |
Molecular Properties / Structure |
Crystals / Crystallography |
Nonmetals
Construction of molecular models  Anker, Rudolph M.
Describes the construction of simple, durable, and inexpensive molecular models consisting primarily of sponge rubber balls of varying sizes.
Anker, Rudolph M. J. Chem. Educ. 1959, 36, 138.
Molecular Modeling |
Molecular Properties / Structure
Revised inorganic (Stock) nomenclature for the general chemistry student  Brasted, Robert C.
Examines the Stock System as applied to teaching general chemistry and naming binary compounds of nonmetals and metals, complex entities, and oxy-anions.
Brasted, Robert C. J. Chem. Educ. 1958, 35, 136.
Nomenclature / Units / Symbols
Isoelectronic molecules: The effect of number of outer-shell electrons on structure  Gillis, Richard G.
The purpose of this discussion is to demonstrate that the concept isoelectric molecules can be of considerable value to the instructor in developing the principles of structural chemistry, to the student in bridging the apparent gap between inorganic and organic chemistry, and the researcher in suggesting analogies that may yield interesting fields for investigation.
Gillis, Richard G. J. Chem. Educ. 1958, 35, 66.
Molecular Properties / Structure
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Some aspects of organic molecules and their behavior. I. Electronegativity  Reinmuth, Otto
Reviews the concept of electronegativity as a means of helping introductory students understand aspects of organic molecules and their behavior.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 272.
Molecular Properties / Structure |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Covalent Bonding
Lone pair electrons  Fowles, Gerald W. A.
The lone pair electrons, whether in simple or hybrid orbitals, have profound effects on the properties of the molecule; these effects may be discussed as bond angles, dipole moments, bond energies and lengths, and coordination and hydrogen bonding.
Fowles, Gerald W. A. J. Chem. Educ. 1957, 34, 187.
Atomic Properties / Structure |
Covalent Bonding |
Coordination Compounds |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
The Grignard reagent reaches the freshman  King, W. Bernard; Beel, John A.
A laboratory procedure that allows students to distinguish between the structure of ethanol and dimethyl ether.
King, W. Bernard; Beel, John A. J. Chem. Educ. 1955, 32, 146.
Grignard Reagents |
Molecular Properties / Structure
Gram equivalent weights  Meldrum, William B.
The purpose of this paper is to review briefly the subject of equivalent weights and the more directly applicable gram equivalents and to offer a general method by which they may be deduced from chemical equations.
Meldrum, William B. J. Chem. Educ. 1955, 32, 48.
Nomenclature / Units / Symbols |
Stoichiometry
Effects of molecular shapes  Foster, Laurence S.
A brief discussion of basic molecular shapes and how they help to determine the physical and chemical properties of substances.
Foster, Laurence S. J. Chem. Educ. 1952, 29, 156.
Molecular Properties / Structure