TIGER

Journal Articles: 594 results
J. Chem. Educ. 1999, 76, 1578–1583  John Andraos
Corrections to the article A Streamlined Approach to Solving Simple and Complex Kinetic Systems Analytically.
Andraos, John. J. Chem. Educ. 2008, 85, 1624.
Kinetics |
Mechanisms of Reactions |
Theoretical Chemistry
Manual Data Processing in Analytical Chemistry: Linear Calibration  Dora Melucci
Most science students are familiar with Excel spreadsheets, but determining which of Excels statistical functions perform a calculation equivalent to a classical equation and calculating errors with Excel are not trivial exercises.
Melucci, Dora. J. Chem. Educ. 2008, 85, 1346.
Calibration |
Chemometrics |
Quantitative Analysis
Helping Students Make Sense of Logarithms and Logarithmic Relationships  Ed DePierro, Fred Garafalo, and Rick Toomey
This paper summarizes difficulties that chemistry students at all levels exhibit when translating, manipulating, and interpreting mathematical expressions containing logarithms, and offers approaches useful in helping students to overcome those difficulties.
DePierro, Ed; Garafalo, Fred; Toomey, Rick T. J. Chem. Educ. 2008, 85, 1226.
Kinetics |
Mathematics / Symbolic Mathematics |
Constructivism
Helping Students Assess the Relative Importance of Different Intermolecular Interactions  Paul G. Jasien
A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipoledipole interactions, and H-bonding on the normal boiling points for a series of simple, straight-chain organic compounds. Application of this model may be useful in addressing student misconceptions related to the additivity of intermolecular interactions.
Jasien, Paul G. J. Chem. Educ. 2008, 85, 1222.
Chemometrics |
Molecular Properties / Structure |
Noncovalent Interactions |
Physical Properties
An Updated Equilibrium Machine  Emeric Schultz
Describes a device that can demonstrate equilibrium and the Le Châtelier principle, as well as kinetic and thermodynamic concepts. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when various air pressures are applied by the blower.
Schultz, Emeric. J. Chem. Educ. 2008, 85, 1131.
Equilibrium |
Kinetics |
Thermodynamics
Data Pooling in a Chemical Kinetics Experiment: The Aquation of a Series of Cobalt(III) Complexes  Richard S. Herrick, Kenneth V. Mills, and Lisa P. Nestor
Describes an experiment that introduces students to integrated rate laws, the search for a mechanism that is consistent with chemical and kinetic data, and the concept of activation barriers and their measurement in a curriculum whose pedagogical philosophy makes the laboratory the center of learning for undergraduates in their first two years of instruction.
Herrick, Richard S.; Mills, Kenneth V.; Nestor, Lisa P. J. Chem. Educ. 2008, 85, 1120.
Coordination Compounds |
Kinetics |
Mechanisms of Reactions |
Rate Law |
UV-Vis Spectroscopy
Disorder and Chaos: Developing and Teaching an Interdisciplinary Course on Chemical Dynamics  Steven G. Desjardins
Describes an interdisciplinary course for nonscience majors that introduces ideas about mathematical modeling using examples based on pendulums, chemical kinetics, and population dynamics. Students learn about the nature of measurement and prediction through the use of spreadsheet software for the solution of equations and experimental data collection.
Desjardins, Steven G. J. Chem. Educ. 2008, 85, 1078.
Kinetics |
Mathematics / Symbolic Mathematics |
Nonmajor Courses
A Simple Laboratory Experiment To Determine the Kinetics of Mutarotation of D-Glucose Using a Blood Glucose Meter  Carlos E. Perles and Pedro L. O. Volpe
A simple commercial blood glucose meter is used to follow the kinetics of mutarotation of D-glucose in aqueous solution. The results may be compared with those obtained using an automatic polarimeter.
Perles, Carlos E.; Volpe, Pedro L. O. J. Chem. Educ. 2008, 85, 686.
Aqueous Solution Chemistry |
Bioanalytical Chemistry |
Carbohydrates |
Chirality / Optical Activity |
Enzymes |
Kinetics |
Solutions / Solvents |
Stereochemistry
Using Pooled Data and Data Visualization To Introduce Statistical Concepts in the General Chemistry Laboratory   Robert J. Olsen
This article describes how data pooling and visualization can be employed in the first-semester general chemistry laboratory to introduce core statistical concepts such as central tendency and dispersion of a data set.
Olsen, Robert J. J. Chem. Educ. 2008, 85, 544.
Chemometrics |
Stoichiometry
Phenolphthalein—Pink Tornado Demonstration  Bruce R. Prall
This demonstration uses the vortex generated by a spinning magnetic stir bar to demonstrate Le Châtelier's principle as it applies to the phenolphthalein equilibrium in water and provides an excellent opportunity to discuss limiting and excess reagents.
Prall, Bruce R. J. Chem. Educ. 2008, 85, 527.
Acids / Bases |
Equilibrium |
Kinetics |
pH
Physical Chemistry: Thermodynamics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 694 pp. ISBN: 978-0815340911 (paper). $49.95

Physical Chemistry: Statistical Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 292 pp. ISBN: 978-0815340850 (paper). $44.95

Physical Chemistry: Kinetics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 169 pp. ISBN: 978-0815340898 (paper). $44.95

Physical Chemistry: Quantum Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 481 pp. ISBN: 978-0815340874 (paper). $44.95

  John Krenos
Metiu has created a significant set of volumes on undergraduate physical chemistry. The integration of Mathematica and Mathcad workbooks into the four texts provides instructors with an attractive new option in teaching.
Krenos, John. J. Chem. Educ. 2008, 85, 206.
Quantum Chemistry |
Statistical Mechanics |
Thermodynamics |
Kinetics
Reaction Order Ambiguity in Integrated Rate Plots  Joe Lee
This article provides a theoretical and statistical justification for the necessity of monitoring a reaction to a substantial fraction of completion if integrated rate plots plots are to yield unambiguous orders.
Lee, Joe. J. Chem. Educ. 2008, 85, 141.
Chemometrics |
Kinetics |
Rate Law
An Experimental Approach to Teaching and Learning Elementary Statistical Mechanics  Frank B. Ellis and David C. Ellis
This article details demonstrations that show how equilibrium changes with temperature, energy, and entropy and involve exothermic and endothermic reactions, the dynamic nature of equilibrium, and Le Châtelier's principle.
Ellis, Frank B.; Ellis, David C. J. Chem. Educ. 2008, 85, 78.
Equilibrium |
Kinetics |
Statistical Mechanics |
Thermodynamics
Similarity and Difference in the Behavior of Gases: An Interactive Demonstration  Guy Ashkenazi
A demonstration that concurrently exposes differences and similarities in the behavior of two different gases has been designed to bridge the gap between students' understanding at the algorithmicmacroscopic and conceptualmicroscopic levels.
Ashkenazi, Guy. J. Chem. Educ. 2008, 85, 72.
Gases |
Kinetics |
Learning Theories
The Glyoxal Clock Reaction  Julie B. Ealy, Alexandra Rodriguez Negron, Jessica Stephens, Rebecca Stauffer, and Stanley D. Furrow
The glyoxal clock reaction has been adapted to a general chemistry kinetics lab to determine the order of the reacting species using a Calculator Based Laboratory or LabPro equipment.
Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D. J. Chem. Educ. 2007, 84, 1965.
Aldehydes / Ketones |
Dyes / Pigments |
Kinetics |
Lewis Acids / Bases |
Mechanisms of Reactions |
Rate Law |
Reactions
The Chemistry of Paper Preservation  Henry A. Carter
This article examines the applications of chemistry to paper preservation. The acid-catalyzed hydrolysis of cellulose accounts for the deterioration of paper in library books and other written records. To combat this threat to our written heritage, new permanent papers have been developed that are relatively chemically stable and undergo a very slow rate of deterioration.
Carter, Henry A. J. Chem. Educ. 2007, 84, 1937.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
Free Radicals |
Gas Chromatography |
HPLC |
pH |
Kinetics |
Rate Law
Visualizing the Transition State: A Hands-on Approach to the Arrhenius Equation  Thomas S. Kuntzleman, Matthew S. Swanson, and Deborah K. Sayers
Pennies and dice are used to simulate the kinetics of two irreversible "reactions" with a hands-on, Monte Carlo approach. Arrhenius plots of the data generated yield activation energies comparable to assigned values and pre-exponential factors close to what would be expected based on the probability of a "reactant" achieving the correct orientation for conversion into "product". A comparison of the values obtained for the pre-exponential factors for the different simulations allows students to semi-quantitatively discuss the orientational requirement that is contained within this factor.
Kuntzleman, Thomas S.; Swanson, Matthew S.; Sayers, Deborah K. J. Chem. Educ. 2007, 84, 1776.
Kinetics |
Rate Law
The Penny Experiment Revisited: An Illustration of Significant Figures, Accuracy, Precision, and Data Analysis  Joseph Bularzik
In this general chemistry laboratory the densities of pennies are measured by weighing them and using two different methods to measure their volumes. The average and standard deviation calculated for the resulting densities demonstrate that one measurement method is more accurate while the other is more precise.
Bularzik, Joseph. J. Chem. Educ. 2007, 84, 1456.
Chemometrics |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Physical Properties
A Student Laboratory Experiment Based on the Vitamin C Clock Reaction  Ed Vitz
Describes an adaptation of the vitamin C clock reaction to a student laboratory experiment in which the orders with respect to peroxide and iodide, the rate constant, and the activation energy are determined by the method of initial rates.
Vitz, Ed. J. Chem. Educ. 2007, 84, 1156.
Consumer Chemistry |
Kinetics |
Mechanisms of Reactions |
Rate Law
Peer-Developed and Peer-Led Labs in General Chemistry  Lorena Tribe and Kim Kostka
Describes a student-developed and led laboratory curriculum as a model for producing a more student-centered and rich laboratory experience in general chemistry laboratories.
Tribe, Lorena; Kostka, Kim. J. Chem. Educ. 2007, 84, 1031.
Acids / Bases |
Electrochemistry |
Equilibrium |
Kinetics |
Laboratory Management |
Thermodynamics |
Student-Centered Learning
Teaching Mathematics to Chemistry Students with Symbolic Computation  J. F. Ogilvie and M. B. Monagan
The authors explain how the use of mathematical software improves the teaching and understanding of mathematics to and by chemistry students while greatly expanding their abilities to solve realistic chemical problems.
Ogilvie, J. F.; Monagan, M. B. J. Chem. Educ. 2007, 84, 889.
Chemometrics |
Computational Chemistry |
Fourier Transform Techniques |
Mathematics / Symbolic Mathematics |
Nomenclature / Units / Symbols
An Inexpensive Kinetic Study: The Reaction of FD&C Red #3 (Erythrosin B) with Hypochlorite  Maher M. Henary and Arlene A. Russell
Students use a desktop visible spectrophotometer to quantitatively follow the rate of disappearance of FD&C Red #3 with hypochlorite. The first-order reaction in both dye and bleach yields simple data that students can easily process and graph using spreadsheet software to obtain the rate constant and the rate law.
Henary, Maher M.; Russell, Arlene A. J. Chem. Educ. 2007, 84, 480.
Dyes / Pigments |
Kinetics |
Rate Law |
UV-Vis Spectroscopy
Applications of Reaction Rate  Kevin Cunningham
This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. The assignment is designed to develop and assess a number of valuable skills and understandings, including the ability to write effectively.
Cunningham, Kevin. J. Chem. Educ. 2007, 84, 430.
Catalysis |
Enzymes |
Kinetics |
Rate Law |
Reactions |
Applications of Chemistry
A Method of Visual Interactive Regression  Michelle S. Kim, Maureen Burkart, and Myung-Hoon Kim
The process behind the least-squares method, minimizing the sum of the deviations squared, is made visible, interactive, and dynamic by allowing the user to adjust heights in a bar graph.
Kim, Michelle S.; Burkart, Maureen; Kim, Myung-Hoon. J. Chem. Educ. 2006, 83, 1884.
Kinetics |
Laboratory Computing / Interfacing |
Quantitative Analysis |
Spectroscopy |
UV-Vis Spectroscopy |
Student-Centered Learning
A Kinetics Demonstration Involving a Green–Red–Green Color Change Resulting from a Large-Amplitude pH Oscillation  Brian W. Pfennig and Richard T. Roberts
Describes an oxidationreduction, clock reaction involving iodate, sulfite, and thiosulfate that produces large swings in pH, causing a combination of acidbase indicators to effect greenredgreen color changes.
Pfennig, Brian W.; Roberts, Richard T. J. Chem. Educ. 2006, 83, 1804.
Acids / Bases |
Dyes / Pigments |
Kinetics |
Oxidation / Reduction
Understanding Isotopic Distributions in Mass Spectrometry  Juris Meija
Offers a simple graphical tool for obtaining complex isotopic distributions.
Meija, Juris. J. Chem. Educ. 2006, 83, 1761.
Mass Spectrometry |
Isotopes |
Chemometrics
The Importance and Efficacy of Using Statistics in the High School Chemistry Laboratory  Paul S. Matsumoto
This paper describes some statistical concepts and their application to various experiments used in high school chemistry.
Matsumoto, Paul S. J. Chem. Educ. 2006, 83, 1649.
Chemometrics |
Mathematics / Symbolic Mathematics
Classroom Scale Demonstrations Using Flash Ignition of Carbon Nanotubes  Dean J. Campbell, Kylee E. Korte, Jesse T. McCann, and Younan Xia
Flash-initiated combustion of carbon nanotubes can be demonstrated in a large setting using a variety of demonstrations. These demonstrations can also be used to illustrate the importance of surface area in chemical reactions.
Campbell, Dean J.; Korte, Kylee E.; McCann, Jesse T.; Xia, Younan. J. Chem. Educ. 2006, 83, 1511.
Kinetics |
Nanotechnology |
Surface Science
Complexometric Titration of Aluminum and Magnesium Ions in Commercial Antacids. An Experiment for General and Analytical Chemistry Laboratories  Shui-Ping Yang and Ruei-Ying Tsai
A novel experiment for determining the total and individual aluminum and magnesium ion content in commercial antacids is described. This experiment is developed with three independent protocols based on complexometric direct and back titrations containing the concepts and usages of blocking, masking, buffer controls and metallic indicators.
Yang, Shui-Ping; Tsai, Ruei-Ying. J. Chem. Educ. 2006, 83, 906.
Aqueous Solution Chemistry |
Chemometrics |
Consumer Chemistry |
Medicinal Chemistry |
Quantitative Analysis |
Titration / Volumetric Analysis |
UV-Vis Spectroscopy
Taming the Barking Dog  Ché Royce Seabourne, George Maxwell, and James Wallace
This demonstration brings Liebig's famous 19th-century demonstration headlong into the 21st century, using digital video footage and other novel media.
Seabourne, Ché Royce; Maxwell, George; Wallace, James. J. Chem. Educ. 2006, 83, 751.
Gases |
Kinetics |
Mechanisms of Reactions |
Reactions
New Highlights on Analyzing First-Order Kinetic Data of the Peroxodisulfate–Iodide System at Different Temperatures  J. Yperman and W. J. Guedens
A pseudo-first order kinetic experiment examining the peroxodisulfateiodide system is executed at different temperatures, making it possible to calculate the activation energy of this reaction.
Yperman, J.; Guedens, W. J. J. Chem. Educ. 2006, 83, 641.
Kinetics |
Laboratory Computing / Interfacing |
Oxidation / Reduction |
Rate Law |
Thermodynamics
An Enzyme Kinetics Experiment Using Laccase for General Chemistry   Yaqi Lin and Patrick M. Lloyd
This article describes the use of laccase, an oxidoreductase enzyme, to study the effects of enzyme catalysts on reaction rates.
Lin, Yaqi; Lloyd, Patrick M. J. Chem. Educ. 2006, 83, 638.
Aldehydes / Ketones |
Bioanalytical Chemistry |
Catalysis |
Enzymes |
Kinetics |
UV-Vis Spectroscopy
The Ultrasonic Soda Fountain: A Dramatic Demonstration of Gas Solubility in Aqueous Solutions  John E. Baur and Melinda B. Baur
An ultrasonic bath is used to accelerate the rate at which carbonated beverages equilibrate with the atmosphere. The resulting fountain, which can reach heights in excess of 3 meters, is a dramatic demonstration of the solubility of gases in liquids.
Baur, John E.; Baur, Melinda B. J. Chem. Educ. 2006, 83, 577.
Aqueous Solution Chemistry |
Kinetics |
Physical Properties |
Solutions / Solvents |
Precipitation / Solubility
Textbook Deficiencies: Ambiguities in Chemical Kinetics Rates and Rate Constants  Keith T. Quisenberry and Joel Tellinghuisen
Recommends that textbook authors make it clear that (i) the reaction rate and rate constant cannot be defined unambiguously without explicitly stating the reaction for which they apply and therefore (ii) the relation between the half-life, which is a physical property of the reaction system, and the rate constant depends upon how the reaction is written.
Quisenberry, Keith T.; Tellinghuisen, Joel. J. Chem. Educ. 2006, 83, 510.
Kinetics |
Rate Law
An Environmentally Focused General Chemistry Laboratory  Morgan Mihok, Joseph T. Keiser, Jacqueline M. Bortiatynski, and Thomas E. Mallouk
A one-semester laboratory has been developed in which principles of general chemistry (aqueous acidbase equilibria, kinetics, thermodynamics, chromatographic separations, spectroscopy) are presented in the context of environmental aquatic chemistry.
Mihok, Morgan; Keiser, Joseph T.; Bortiatynski, Jacqueline M.; Mallouk, Thomas E. J. Chem. Educ. 2006, 83, 250.
Acids / Bases |
Chromatography |
Aqueous Solution Chemistry |
Ion Exchange |
Kinetics |
Nonmajor Courses |
Spectroscopy |
UV-Vis Spectroscopy
Steel Wool and Oxygen: How Constant Should a Rate Constant Be?  Michiel Vogelezang
In the article Steel Wool and Oxygen: A Look at Kinetics, James Gordon and Katherine Chancey describe an experiment about the kinetics between iron and oxygen. Like all good experiments this one is easy to carry out and produces good results. However, the experiment can even have a greater impact with only a small addition.
Vogelezang, Michiel. J. Chem. Educ. 2006, 83, 214.
Rate Law |
Kinetics |
Oxidation / Reduction
Further Analysis of Boiling Points of Small Molecules, CHwFxClyBrz  Guy Beauchamp
Multiple linear regression analysis has proven useful in selecting predictor variables that could significantly clarify the boiling point variation of the CHwFxClyBrz molecules.
Beauchamp, Guy. J. Chem. Educ. 2005, 82, 1842.
Chemometrics |
Physical Properties |
Hydrogen Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Simple and Inexpensive Computer Interface to a Durrum Stopped-Flow Apparatus Tested Using the Iron(III)–Thiocyanate Reaction  Craig M. Hoag
Describes a computer interface between a Durrum model 110 stopped-flow apparatus and a LabPro voltage probe using LoggerPro software from Vernier. This probe and software can be used to measure and record data from most instruments normally connected to an oscilloscope or chart recorder.
Hoag, Craig M. J. Chem. Educ. 2005, 82, 1823.
Instrumental Methods |
Kinetics |
Laboratory Computing / Interfacing |
Coordination Compounds |
UV-Vis Spectroscopy
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry Laboratory  Madalena S. C. Dionísio, Hermínio P. Diogo, J. P. S. Farinha, and Joaquim J. Moura-Ramos
In this article we present a laboratory experiment for an undergraduate physical chemistry course. The purpose of this experiment is the study of molecular mobility in a crystal using the technique of dielectric relaxation spectroscopy. The experiment illustrates important physical chemistry concepts. The background of the experimental technique deals with the concepts of orientational and induced polarization and frequency-dependent relative permittivity (or dielectric constant). The kinetic concepts of temperature-dependent relaxation time, activation energy, and activation entropy are involved in the concept of molecular mobility.
Dionísio, Madalena S. C.; Diogo, Hermínio P.; Farinha, J. P. S.; Moura-Ramos, Joaquim J. J. Chem. Educ. 2005, 82, 1355.
Kinetics |
Phases / Phase Transitions / Diagrams |
Solids |
Crystals / Crystallography
Cross-Proportions: A Conceptual Method for Developing Quantitative Problem-Solving Skills  Elzbieta Cook and Robert L. Cook
This paper focuses attention on the cross-proportion (C-P) method of mathematical problem solving, which was once widely used in chemical calculations. We propose that this method regain currency as an alternative to the dimensional analysis (DA) method, particularly in lower-level chemistry courses. In recent years, the DA method has emerged as the only problem solving mechanism offered to high-school and general chemistry students in contemporary textbooks, replacing more conceptual methods, C-P included.
Cook, Elzbieta; Cook, Robert L. J. Chem. Educ. 2005, 82, 1187.
Learning Theories |
Stoichiometry |
Chemometrics |
Student-Centered Learning
Kinetics of Alcohol Dehydrogenase-Catalyzed Oxidation of Ethanol Followed by Visible Spectroscopy  Kestutis Bendinskas, Christopher DiJiacomo, Allison Krill, and Ed Vitz
A two-week biochemistry experiment was introduced in the second-semester general chemistry laboratory to study the oxidation of ethanol in vitro in the presence of the enzyme alcohol dehydrogenase (ADH). This reaction should pique student interest because the same reaction also occurs in human bodies when alcoholic drinks are consumed. Procedures were developed to follow the biochemical reaction by visible spectroscopy and to avoid specialized equipment. The effect of substrate concentration on the rate of this enzymatic reaction was investigated during the first week. The effects of temperature, pH, the specificity of the enzyme to several substrates, and the enzyme's inhibition by heavy metals were explored during the second week.
Bendinskas, Kestutis; DiJiacomo, Christopher; Krill, Allison; Vitz, Ed. J. Chem. Educ. 2005, 82, 1068.
Enzymes |
Kinetics |
Oxidation / Reduction |
Reactions |
UV-Vis Spectroscopy |
Alcohols |
Biophysical Chemistry |
Food Science
Steel Wool and Oxygen: A Look at Kinetics  James Gordon and Katherine Chancey
An experimental method is described to study the kinetics of the reaction of the iron in steel wool with molecular oxygen. A calculator-based data collection system is used with an oxygen gas sensor to determine the order of the reaction with respect to oxygen. Using the graphical method, students determine that the reaction follows first-order kinetics with respect to oxygen.
Gordon, James; Chancey, Katherine. J. Chem. Educ. 2005, 82, 1065.
Atmospheric Chemistry |
Gases |
Kinetics |
Oxidation / Reduction
A Modified Demonstration of the Catalytic Decomposition of Hydrogen Peroxide  Carlos Alexander Trujillo
A safer and cheaper version of the popular catalyzed decomposition of hydrogen peroxide demonstration commonly called the Elephants Toothpaste is presented. Hydrogen peroxide is decomposed in the presence of a surfactant by the enzyme catalase producing foam. Catalase has a higher activity compared with the traditional iodide and permits the use of diluted hydrogen peroxide solutions. The demonstration can be made with household products with similar amazing effects.
Trujillo, Carlos Alexander. J. Chem. Educ. 2005, 82, 855.
Catalysis |
Kinetics |
Oxidation / Reduction
An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps  Laura D. Jennings and Steven W. Keller
An interactive classroom activity is described that allows visualization of microscopic reaction mechanisms via the macroscopic process of unwrapping and eating chocolate candies.
Jennings, Laura D.; Keller, Steven W. J. Chem. Educ. 2005, 82, 549.
Reactions |
Rate Law |
Kinetics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems  Paul S. Matsumoto
The traditional method to determine the equilibrium concentration of chemicals in a reaction, given the equilibrium constant and the initial concentration of chemicals in the reaction, involves the determination of the reaction quotient. This article will demonstrate that this step may be eliminated; thereby simplifying the algorithm to solve such problems. Such a reduction in the complexity of the algorithm may result in more students successfully being able to solve such problems.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 406.
Equilibrium |
Learning Theories |
Chemometrics
Capillary Electrophoresis Analysis of Cations in Water Samples. An Experiment for the Introductory Laboratory  Christopher J. Pursell, Bert Chandler, and Michelle M. Bushey
This experiment can be done in a lab, as a "dry-lab", or as an in-class exercise. Students explore a number of basic separation topics and work with figures of merit for real and meaningful samples. We have adopted a strategy where students encounter various instruments and methods of analyses multiple times throughout the curriculum. The level of sophistication in the exposures increases with the experience level of the students. Through this repeated exposure students will gain a better and fuller understanding of these methods than they would with a single exposure to the technique in the analytical or instrumental laboratory.
Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M. J. Chem. Educ. 2004, 81, 1783.
Electrophoresis |
Quantitative Analysis |
Separation Science |
Chemometrics |
Water / Water Chemistry
Statistical Comparison of Data in the Analytical Laboratory  Michael J. Samide
In this article, an experiment designed to provide students with an experience involving statistical treatment of data is described. This experiment allows students to compare 11 different techniques for measuring specific volumes of water. Replicate measurements are taken for each technique and comparisons are made both within a data set and between different data sets. Through calculation of t-values, students are able to draw conclusions about the precision and accuracy of these various techniques.
Samide, Michael J. J. Chem. Educ. 2004, 81, 1641.
Chemometrics
Old Nassau Demonstration with Wilkinson Modification  Lawrence E. Wilkinson
A modification of the Old Nassau Reaction demonstration is presented, wherein a 0.025 M silver nitrate solution is used in place of the mercury(II) chloride solution employed in the original demonstration.
Wilkinson, Lawrence E. J. Chem. Educ. 2004, 81, 1474.
Aqueous Solution Chemistry |
Kinetics |
Oxidation / Reduction |
Reactions
Using Clinical Cases To Teach General Chemistry  Brahmadeo Dewprashad, Charles Kosky, Geraldine S. Vaz, and Charlotte L. Martin
This article describes how a fact-based clinical case was effectively used to motivate and enrich the classroom experience and review many of the concepts covered in general chemistry. The case involves an elderly patient who was brought to the emergency room. The results of his physical examination and laboratory analysis of his blood are presented. The students, in peer-led groups, work through the chemical principles involved in the doctor's diagnosis and treatment options for the patient. The article describes the case study, instructors' observations, and students' perception of the activity.
Dewprashad, Brahmadeo; Kosky, Charles; Vaz, Geraldine S.; Martin, Charlotte L. J. Chem. Educ. 2004, 81, 1471.
Acids / Bases |
Drugs / Pharmaceuticals |
Equilibrium |
Kinetics |
Medicinal Chemistry
Unified Approximations: A New Approach for Monoprotic Weak Acid–Base Equilibria  Harry L. Pardue, Ihab N. Odeh, and Teweldemedhin M. Tesfai
This article describes a new approach to approximate calculations for monoprotic acidbase equilibria in otherwise pure water. The new approach, identified herein as unified approximations, uses a simple decision criterion to select between situations that should be treated as deprotonation and protonation reactions. The remaining treatment takes account of changes in concentrations of conjugate acidbase pairs for all situations and ignores autoprotolysis only for situations for which the analytical concentration of either the conjugate acid or conjugate base will always be larger than zero.
Pardue, Harry L.; Odeh, Ihab N.; Tesfai, Teweldemedhin M. J. Chem. Educ. 2004, 81, 1367.
Acids / Bases |
Equilibrium |
Chemometrics
A Simple, Inexpensive Water-Jacketed Cuvette for the Spectronic 20  Jonathan E. Thompson and Jason Ting
A simple, inexpensive, water-jacketed cuvette for the Spectronic 20 is described. The cuvette and associated flow system can easily be constructed from materials commonly found in an undergraduate chemistry laboratory. As a demonstration of the cuvette's utility, we used the cuvette for the determination of the activation energy for the reaction between crystal violet and hydroxide ion. However, the cuvette may prove useful in a variety of applications in which a sample must be thermostated within a spectrophotometer.
Thompson, Jonathan E.; Ting, Jason. J. Chem. Educ. 2004, 81, 1341.
Laboratory Equipment / Apparatus |
Kinetics |
Spectroscopy
Reaction to Why Do We Teach Equilibrium Calculations?  Stephen J. Hawkes
"Rigor" in introductory chemistry is often equated with quantitation. Consequently the understanding of chemical reactions and properties is obscured. This was illustrated by Stumpo who asked students to calculate ?E of a reaction, and then on another question on the same test asked a question aimed at its meaning. 77% of the students calculated correctly, but only 24% showed understanding of its meaning. The ability to calculate a number does not measure understanding of the number.
Hawkes, Stephen J. J. Chem. Educ. 2004, 81, 1265.
Equilibrium |
Chemometrics
Reaction to Why Do We Teach Equilibrium Calculations?   Don L. Lewis
A recently published correspondence by Stephen J. Hawkes on teaching equilibrium calculations troubles me. Hawkes dismisses equilibrium calculations as mere algorithms, best deferred until the student can use computer programs. I find it difficult to believe that a computer program enhances understanding. From a chemists point of view, the equilibrium condition is a limit, a limit that (because of stochastic considerations) does not exist. It might be better to make the reaction quotient statement using < or > but the use of those relations is delayed until quantum mechanics.
Lewis, Don L. J. Chem. Educ. 2004, 81, 1265.
Equilibrium |
Chemometrics
Using a Datalogger To Determine First-Order Kinetics and Calcium Carbonate in Eggshells  Martin M. F. Choi and Pui Shan Wong
The purpose of this article is to demonstrate the use of a datalogger in conjunction with a pressure sensor to monitor the generation of carbon dioxide when calcium carbonate is in contact with hydrochloric acid.
Choi, Martin M. F.; Wong, Pui Shan. J. Chem. Educ. 2004, 81, 859.
Kinetics |
Food Science |
Microscale Lab |
Quantitative Analysis |
Laboratory Computing / Interfacing
Kinetics of the Osmotic Hydration of Chickpeas  Gabriel Pinto and Ali Esin
An experiment examining the swelling of chickpeas as they are soaked in water is presented to introduce students to topics such as osmotic flow, mass transfer, diffusion, kinetics of hydration, modeling, and estimation of activation energy.
Pinto, Gabriel; Esin, Ali. J. Chem. Educ. 2004, 81, 532.
Kinetics |
Water / Water Chemistry |
Food Science |
Transport Properties
Using a Graphing Calculator To Determine a First-Order Rate Constant: Author Reply  José E. Cortés-Figueroa
When technology is used to help with mathematical calculations, the emphasis must be on the concepts being learned rather than simply the procedures. In our approach we are attempting to help students learn more about the concept and also to attain data analysis skills they will need in the future.
Cortés-Figueroa, José E. J. Chem. Educ. 2004, 81, 485.
Kinetics |
Chemometrics
Using a Graphing Calculator To Determine a First-Order Rate Constant  Todd P. Silverstein
The authors use the graphing calculator to estimate the infinity reading from linearized kinetics data, and then they use linearized semi-log data to determine the first-order rate constant.
Silverstein, Todd P. J. Chem. Educ. 2004, 81, 485.
Kinetics |
Chemometrics
Effects of an Active Learning Environment: Teaching Innovations at a Research I Institution  Maria T. Oliver-Hoyo, DeeDee Allen, William F. Hunt, Joy Hutson, and Angela Pitts
This paper describes a new approach for teaching general chemistry that combines lecture and laboratory into one seamless session and incorporates instructional methods supported by research-based findings. The results of a study that compared two instructional formats, conventional passive lecture and the student-centered, highly collaborative format known as cAcL2 (concept Advancement through chemistry LabLecture), are also presented.
Oliver-Hoyo, Maria T.; Allen, DeeDee; Hunt, William F.; Hutson, Joy; Pitts, Angela. J. Chem. Educ. 2004, 81, 441.
Chemometrics |
Student-Centered Learning
A Modular Laser Apparatus for Polarimetry, Nephelometry, and Fluorimetry in General Chemistry  Scott A. Darveau, Jessica Mueller, April Vaverka, Cheri Barta, Anthony Fitch, Jessica Jurzenski, and Yvonne Gindt
We present an apparatus suitable for multiple uses in the general chemistry laboratory including polarimetry, fluorescence, and nephelometry. The open design of the instrument also decreases the chance that students will contract the "black-box syndrome" that seems to develop when using instruments that only provide the final data in an experiment without showing how the measurements are obtained.
Darveau, Scott A.; Mueller, Jessica; Vaverka, April; Barta, Cheri; Fitch, Anthony; Jurzenski, Jessica; Gindt, Yvonne. J. Chem. Educ. 2004, 81, 401.
Fluorescence Spectroscopy |
Kinetics |
Laboratory Equipment / Apparatus |
Lasers |
Spectroscopy |
Proteins / Peptides |
Water / Water Chemistry
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
Promoting Graphical Thinking: Using Temperature and a Graphing Calculator To Teach Kinetics Concepts  José E. Cortés-Figueroa and Deborah A. Moore-Russo
A Calculator-Based Laboratory (CBL) System, a graphing calculator, and a cooling piece of metal are used in a classroom demonstration to teach key concepts of a first-order chemical reaction. This activity promotes graphical thinking and permits student-centered instruction where the students explore concepts and discover how simple mathematical equations model observable facts (data).
Cortés-Figueroa, José E.; Moore-Russo, Deborah A. J. Chem. Educ. 2004, 81, 69.
Kinetics |
Rate Law
Don't Be Tricked by Your Integrated Rate Plot  Edward Urbansky
Reply to comments on original article.
Urbansky, Edward. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Reaction order Ambiguity  Sue Le Vent
Integrated rate equations (for constant reaction volume) may be given in terms of relative reactant concentration, C (= concentration/initial concentration) and relative time, T (= time/half-life); in these forms, the equations are independent of rate constants and initial concentrations.
Le Vent, Sue. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Don't Be Tricked by Your Integrated Rate Plot: Pitfalls of Using Integrated Rate Plots  Gabor Lente
Problems with linearizing the integrated rate law.
Lente, Gabor. J. Chem. Educ. 2004, 81, 32.
Kinetics |
Mechanisms of Reactions |
Chemometrics
Flipping Pennies and Burning Candles: Adventures in Kinetics  Michael J. Sanger
Activity in which students collect data to determine whether two processes, flipping pennies and burning candles, follow zeroth- or first-order rate laws.
Sanger, Michael J. J. Chem. Educ. 2003, 80, 304A.
Kinetics |
Rate Law
Reactions (→) vs Equations (=)  S. R. Logan
A recent chemical kinetics text uses an equals sign for an overall reaction, whereas an arrow is used in each of the reaction steps that are proposed to constitute the mechanism, and for any elementary process.
Logan, S. R. J. Chem. Educ. 2003, 80, 1258.
Kinetics |
Nomenclature / Units / Symbols |
Reactions |
Mechanisms of Reactions
SpecScan: A Utility Program for Generating Numerical Data from Printed Forms of Spectra or Other Signals  Constantinos E. Efstathiou
SpecSpan is a utility program for Microsoft Windows that generates numerical data from printed spectra or other plots found as figures in text, chart recordings, or freehand drawings. SpecScan can process bitmap (.BMP) images of such figures and drawings. After a brief interaction with the user, it generates and exports numerical data as Excel (.XLS) or text (.TXT) files.
Efstathiou, Constantinos E. J. Chem. Educ. 2003, 80, 1093.
Chemometrics |
Spectroscopy
From Our Peer-Reviewed Collection  William F. Coleman and Edward W. Fedosky
The JCE WebWare collection continues to evolve and grow. This month we add another program, SpecScan: A Utility Program for Generating Numerical Data from Printed Forms of Spectra or Other Signals, to our collection of peer-reviewed WebWare.
Coleman, William F.; Fedosky, Edward W. J. Chem. Educ. 2003, 80, 1093.
Chemometrics |
Spectroscopy
SpecScan: A Utility Program for Generating Numerical Data from Printed Forms of Spectra or Other Signals  Constantinos E. Efstathiou
The JCE WebWare collection continues to evolve and grow. This month we add another program, SpecScan: A Utility Program for Generating Numerical Data from Printed Forms of Spectra or Other Signals, to our collection of peer-reviewed WebWare.
Efstathiou, Constantinos E. J. Chem. Educ. 2003, 80, 1093.
Chemometrics |
Spectroscopy
Two Linear Correlation Coefficients  Robert de Levie
In fitting data to a straight line, many calculators and computer programs display a linear correlation coefficient. Two types of linear correlation coefficients are discussed, one often useful in chemical calculations, the other usually not.
de Levie, Robert. J. Chem. Educ. 2003, 80, 1030.
Chemometrics
Decomposition Kinetics of Hydrogen Peroxide: Novel Lab Experiments Employing Computer Technology  Dorota A. Abramovitch, Latrice K. Cunningham, and Mitchell R. Litwer
Using a sensor to measure changes in the pressure of oxygen produced by the decomposition of hydrogen peroxide as a means of analyzing this reaction and factors that affect its rate.
Abramovitch, Dorota A.; Cunningham, Latrice K.; Litwer, Mitchell R. J. Chem. Educ. 2003, 80, 790.
Gases |
Laboratory Computing / Interfacing |
Kinetics
Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide  Tiffany A. Vetter and D. Philip Colombo Jr.
Determining the order and rate constant of the catalyzed decomposition of hydrogen peroxide using AOSEPT contact lens cleaning and a platinum-coated AOSEPT disc.
Vetter, Tiffany A.; Colombo, D. Philip, Jr. J. Chem. Educ. 2003, 80, 788.
Catalysis |
Consumer Chemistry |
Kinetics |
Laboratory Computing / Interfacing |
Rate Law
Applying the Reaction Table Method for Chemical Reaction Problems (Stoichiometry and Equilibrium)  Steven F. Watkins
A systematic approach to chemical reaction calculations (stoichiometry calculations) - the "Reaction Table Method" (similar to the equilibrium table method).
Watkins, Steven F. J. Chem. Educ. 2003, 80, 658.
Equilibrium |
Stoichiometry |
Reactions |
Kinetics
Classification of Vegetable Oils by Principal Component Analysis of FTIR Spectra  David A. Rusak, Leah M. Brown, and Scott D. Martin
Comparing unknown samples of vegetable oils to known samples using FTIR and principal component analysis (PCA) and nearest means classification (NMC).
Rusak, David A.; Brown, Leah M.; Martin, Scott D. J. Chem. Educ. 2003, 80, 541.
IR Spectroscopy |
Instrumental Methods |
Food Science |
Lipids |
Chemometrics |
Qualitative Analysis |
Fourier Transform Techniques |
Consumer Chemistry |
Applications of Chemistry
Incomplete Combustion with Candle Flames: A Guided-Inquiry Experiment in the First-Year Chemistry Lab  Joseph MacNeil and Lisa Volaric
Investigating a burning candle as an introduction to incomplete combustion, thermodynamics, kinetics, and gas chromatography.
MacNeil, Joseph; Volaric, Lisa. J. Chem. Educ. 2003, 80, 302.
Chromatography |
Gases |
Reactions |
Oxidation / Reduction |
Thermodynamics |
Kinetics |
Gas Chromatography
Teaching Chemistry Using From the Earth to the Moon  James G. Goll and Stacie L. Mundinger
Teaching chemistry using From the Earth to the Moon (an HBO original movie series).
Goll, James G.; Mundinger, Stacie L. J. Chem. Educ. 2003, 80, 292.
Electrochemistry |
Chemometrics |
Reactions |
Mechanisms of Reactions |
Applications of Chemistry
A Photolithography Laboratory Experiment for General Chemistry Students   Adora M. Christenson, Gregory W. Corder, Thomas C. DeVore, and Brian H. Augustine
A photolithography laboratory experiment for general chemistry that introduces materials science and the production of microfabricated devices.
Christenson, Adora M.; Corder, Gregory W.; DeVore, Thomas C.; Augustine, Brian H. J. Chem. Educ. 2003, 80, 183.
Kinetics |
Materials Science |
Photochemistry |
Spectroscopy
An Interactive Graphical Approach to Temperature Conversions  Jonathan Mitschele
Activity to demonstrate the relationship between the Fahrenheit and Celsius temperature scales by graphing measurements of English- and metric-unit thermometers.
Mitschele, Jonathan. J. Chem. Educ. 2002, 79, 1235.
Nomenclature / Units / Symbols |
Chemometrics |
Calorimetry / Thermochemistry
Depletion: A Game with Natural Rules for Teaching Reaction Rate Theory  Donald J. Olbris and Judith Herzfeld
Game that reinforces central concepts of rate theory through simulation.
Olbris, Donald J.; Herzfeld, Judith. J. Chem. Educ. 2002, 79, 1232.
Kinetics |
Nonmajor Courses |
Rate Law |
Enrichment / Review Materials |
Catalysis
LIMSport: Optimizing a Windows-Based Computer Data Acquisition and Reduction System for the General Chemistry Laboratory  Ed Vitz and Brenda P. Egolf
Project to develop a Windows/Excel data acquisition system for LIMSport (a mechanism for automatically acquiring data from a variety of sensors into a spreadsheet so that teachers and students only need spreadsheet skills to acquire and analyze data) and evaluate its effectiveness in promoting student learning.
Vitz, Ed; Egolf, Brenda P. J. Chem. Educ. 2002, 79, 1060.
Laboratory Computing / Interfacing |
Learning Theories |
Chemometrics
Rate Law Determination of Everyday Processes  Michael J. Sanger, Russell A. Wiley Jr., Erwin W. Richter, and Amy J. Phelps
Laboratory to determine whether burning a candle and flipping pennies follow zero-, first-, or second-order rate laws.
Sanger, Michael J.; Wiley, Russell A., Jr.; Richter, Erwin W.; Phelps, Amy J. J. Chem. Educ. 2002, 79, 989.
Kinetics |
Rate Law
Precision in Microscale Titration  Mono M. Singh, Cynthia B. McGowan, and Zvi Szafran
Comparing the precision of a 2-mL graduated pipet and 50-mL graduated buret in performing a microscale titration.
Singh, Mono M.; McGowan, Cynthia B.; Szafran, Zvi. J. Chem. Educ. 2002, 79, 941.
Laboratory Equipment / Apparatus |
Chemometrics |
Microscale Lab |
Titration / Volumetric Analysis
Precision in Microscale Titration  Julian L. Roberts Jr.
Comparing the precision of a 2-mL graduated pipet and 50-mL graduated buret in performing a microscale titration.
Roberts, Julian L., Jr. J. Chem. Educ. 2002, 79, 941.
Laboratory Equipment / Apparatus |
Chemometrics |
Microscale Lab |
Titration / Volumetric Analysis
Precision in Microscale Titration  Julian L. Roberts Jr.
Comparing the precision of a 2-mL graduated pipet and 50-mL graduated buret in performing a microscale titration.
Roberts, Julian L., Jr. J. Chem. Educ. 2002, 79, 941.
Laboratory Equipment / Apparatus |
Chemometrics |
Microscale Lab |
Titration / Volumetric Analysis
Experimental Design and Multiplexed Modeling Using Titrimetry and Spreadsheets  Peter de B. Harrington, Erin Kolbrich, and Jennifer Cline
Determining the acidity of three vinegar samples using multiplexed titrations and an MS Excel spreadsheet.
Harrington, Peter de B.; Kolbrich, Erin; Cline, Jennifer. J. Chem. Educ. 2002, 79, 863.
Acids / Bases |
Chemometrics |
Stoichiometry |
Titration / Volumetric Analysis
Nonlinear Fits of Standard Curves: A Simple Route to Uncertainties in Unknowns   Carl Salter and Robert de Levie
The problem of covariance in using calibration curves and a nonlinear least-squares procedure that permits a direct estimation of uncertainty without the need for covariance.
Salter, Carl; de Levie, Robert. J. Chem. Educ. 2002, 79, 268.
Chemometrics
Some Unusual Applications of the "Error-Bar" Feature in Excel Spreadsheets  Kieran F. Lim
Paper demonstrating how the "error-bar" feature in Excel can be sued to produce high-quality graphs for university teaching, learning, and research.
Lim, Kieran F. J. Chem. Educ. 2002, 79, 135.
Chemometrics
Factors Affecting Reaction Kinetics of Glucose Oxidase  Kristin A. Johnson
Demonstration based on a biochemical kinetics experiment in which the rate of reaction varies with the enzyme concentration, substrate concentration, substrate used in the reaction, and temperature.
Johnson, Kristin A. J. Chem. Educ. 2002, 79, 74.
Enzymes |
Kinetics |
Proteins / Peptides |
Carbohydrates |
Catalysis |
Rate Law
Putting UV-Sensitive Beads to the Test  Terre Trupp
Explores the temperature behavior of UV-sensitive beads and investigates the effectiveness of sunscreens.
Trupp, Terre. J. Chem. Educ. 2001, 78, 648A.
Atomic Properties / Structure |
Kinetics |
Applications of Chemistry |
Consumer Chemistry |
Photochemistry
A Discovery-Based Experiment Illustrating How Iron Metal Is Used to Remediate Contaminated Groundwater  Barbara A. Balko and Paul G. Tratnyek
Procedure in which students investigate the chemistry of iron-permeable reactive barriers and their application to the remediation of contaminated groundwater.
Balko, Barbara A.; Tratnyek, Paul G. J. Chem. Educ. 2001, 78, 1661.
Kinetics |
Oxidation / Reduction |
Water / Water Chemistry |
Metals |
Applications of Chemistry |
Aqueous Solution Chemistry
Visualizing the Photochemical Steady State with UV-Sensitive Beads (re J. Chem. Educ. 2001, 77, 648A-648B)  Jerry A. Bell
Analysis of the temperature dependence of the color intensity of UV-sensitive beads.
Bell, Jerry A. J. Chem. Educ. 2001, 78, 1594.
Atomic Properties / Structure |
Kinetics |
Photochemistry |
Chemometrics
On Concepts of Partial Volume and Law of Partial Volume (re J. Chem. Educ. 2001, 78, 238-240)  Myung-Hoon Kim
Supplementing the law of partial pressures with a law of partial volumes.
Kim, Myung-Hoon. J. Chem. Educ. 2001, 78, 1594.
Gases |
Chemometrics |
Physical Properties
On Concepts of Partial Volume and Law of Partial Volume (re J. Chem. Educ. 2001, 78, 238-240)  David W. Miller
Supplementing the law of partial pressures with a law of partial volumes.
Miller, David W. J. Chem. Educ. 2001, 78, 1594.
Gases |
Chemometrics |
Physical Properties
Analysis of Success in General Chemistry Based on Diagnostic Testing Using Logistic Regression  Margaret J. Legg, Jason C. Legg, and Thomas J. Greenbowe
Estimating the probability of succeeding in general chemistry based on diagnostic or placement exam scores.
Legg, Margaret J.; Legg, Jason C.; Greenbowe, Thomas J. J. Chem. Educ. 2001, 78, 1117.
Chemometrics |
Learning Theories |
Student / Career Counseling
Don't Be Tricked by Your Integrated Rate Plot!  Edward T. Urbansky
Using integrated rate plots to determine reaction order.
Urbansky, Edward T. J. Chem. Educ. 2001, 78, 921.
Kinetics |
Mechanisms of Reactions |
Learning Theories |
Chemometrics |
Rate Law
A Simple Method for Illustrating Uncertainty Analysis  Paul C. Yates
A fast and simple method for generating data for uncertainty analysis; includes statistical analysis and calculation of maximum probable error for a sample set of data.
Yates, Paul C. J. Chem. Educ. 2001, 78, 770.
Chemometrics |
Quantitative Analysis
Chemistry Report. MAA-CUPM Curriculum Foundations Workshop in Biology and Chemistry, Macalester College, November 2-5, 2000  Norman C. Craig
Chemists list specific knowledge and skills in mathematics needed by chemistry students and indicate whether mathematicians or chemists should deliver the instruction; the course level of the instruction and the use of technological aids are also designated.
Craig, Norman C. J. Chem. Educ. 2001, 78, 582.
Chemometrics |
Mathematics / Symbolic Mathematics |
Learning Theories
What's Been Happening to Undergraduate Mathematics  David M. Bressoud
An overview of some of the changes that have been occurring in undergraduate mathematics education; based on a workshop held by the Mathematical Association of America to determine what chemists expect their students to learn from undergraduate mathematics courses in terms of understanding, content, and use of technology.
Bressoud, David M. J. Chem. Educ. 2001, 78, 578.
Learning Theories |
Mathematics / Symbolic Mathematics |
Chemometrics
Understanding Solubility through Excel Spreadsheets  Pamela Brown
This article describes assignments related to the solubility of inorganic salts that can be given in an introductory general chemistry course. These assignments address the need for math, graphing, and computer skills in the chemical technology program by developing skill in the use of Microsoft Excel to prepare spreadsheets and graphs and to perform linear and nonlinear curve-fitting.
Brown, Pamela. J. Chem. Educ. 2001, 78, 268.
Aqueous Solution Chemistry |
Chemometrics |
Precipitation / Solubility
A Simple Laboratory Experiment for the Determination of Absolute Zero  Myung-Hoon Kim, Michelle Song Kim, and Suw-Young Ly
A novel method that employs a remarkably simple and inexpensive apparatus and is based on the extrapolation of the volume of a given amount of dry air to zero volume after a volume of air trapped inside a 10-mL graduated cylinder is measured at various temperatures.
Kim, Myung-Hoon; Kim, Michelle Song; Ly, Suw-Young. J. Chem. Educ. 2001, 78, 238.
Gases |
Physical Properties |
Chemometrics
The State of Division of Solids and Chemical Equilibria  João C. M. Paiva and Victor M. S. Gil
An experiment and a computer simulation are presented to address a counterintuitive situation often encountered when teaching chemical equilibria. This is prompted by the question "How can the subdivision of a solid reactant affect the reaction rate and not the composition of the equilibrium state?"
Paiva, João C. M.; Gil, Victor M. S. J. Chem. Educ. 2001, 78, 222.
Equilibrium |
Kinetics |
Laboratory Computing / Interfacing
A Simple Method for Demonstrating Enzyme Kinetics Using Catalase from Beef Liver Extract  Kristin A. Johnson
A simple visual method of demonstrating enzyme kinetics using beef liver catalase. Filter paper is saturated with beef liver extract and placed into a solution of hydrogen peroxide. The catalase in the extract decomposes the hydrogen peroxide to water and oxygen. Oxygen forms on the filter paper, and the filter paper rises to the top of the beaker. Catalase activity is measured by timing the rise of the enzyme-soaked filter paper to the top of beakers containing different concentrations of hydrogen peroxide.
Johnson, A. Kristin. J. Chem. Educ. 2000, 77, 1451.
Enzymes |
Kinetics |
Proteins / Peptides |
Reactions
How Can an Instructor Best Introduce the Topic of Significant Figures to Students Unfamiliar with the Concept?  Richard A. Pacer
The focus of this paper is how best to introduce the concept of significant figures so that students find it meaningful before a stage is reached at which they become turned off. The approach described begins with measurements students are already familiar with from their life experiences and involves the students as active learners.
Pacer, Richard A. J. Chem. Educ. 2000, 77, 1435.
Learning Theories |
Nonmajor Courses |
Chemometrics
Epoxy Polymerization  Fred Schubert and Tom LoBuglio
Identifying the gel point of a polymer using a multimeter.
Schubert, Fred; LoBuglio, Tom. J. Chem. Educ. 2000, 77, 1409.
Kinetics |
Lasers |
Spectroscopy
Interpretation of Second Virial Coefficient  Vivek Utgikar
Identifying the gel point of a polymer using a multimeter.
Utgikar, Vivek. J. Chem. Educ. 2000, 77, 1409.
Kinetics |
Lasers |
Spectroscopy |
Gases |
Thermodynamics
Comparisons and Demonstrations of Scientific Calculators  Myung-Hoon Kim, Suw-Young Ly, and Tae-Kee Hong
Scientific calculators are compared in terms of their capacities, featuring many advantages of the graphic calculator over simple nongraphic calculators. Applications in this paper include a simulation of acid-base titration curves, and graphic display of a time course of concentrations of reactants and products for a chemical reaction with first-order kinetics.
Kim, Myung-Hoon; Ly, Suw-Young; Hong, Tae-Kee. J. Chem. Educ. 2000, 77, 1367.
Acids / Bases |
Kinetics |
Titration / Volumetric Analysis
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics Revisited (about J. Chem. Educ. 1998, 75, 998-1003)  James E. Sturm
Estimation of temperatures in heaven and hell based on biblical information.
Sturm, James E. J. Chem. Educ. 2000, 77, 1278.
Nonmajor Courses |
Calorimetry / Thermochemistry |
Thermodynamics |
Atomic Properties / Structure |
Kinetics |
Nuclear / Radiochemistry
Pixel Conversion: A Simple Way to Extract Coordinates of Points from a Printed Graph  Christian Aymard and Randall B. Shirts
A very simple method is described for extracting the coordinates of points from printed graphs, student reports, or publications. One only needs a flatbed scanner and a desktop computer. This is a convenient and inexpensive alternative to the tedious traditional method using a ruler or to the more costly programs available commercially. A Windows program has been made available to perform the required operations.
Aymard, Christian; Shirts, Randall B. J. Chem. Educ. 2000, 77, 1230.
Chemometrics
Encouraging Meaningful Quantitative Problem Solving  Jeff Cohen, Meghan Kennedy-Justice, Sunny Pai, Carmen Torres, Rick Toomey, Ed DePierro, and Fred Garafalo
This paper describes the efforts of a group of teachers to help college freshman chemistry students and high school science students to improve their problem-solving skills. The presentation includes several sets of questions intended to elucidate ideas and to involve the reader in the process of reflecting upon his or her own problem-solving strategies.
Cohen, Jeff; Kennedy-Justice, Meghan; Pai, Sunny; Torres, Carmen; Toomey, Rick; DePierro, Ed; Garafalo, Fred. J. Chem. Educ. 2000, 77, 1166.
Mathematics / Symbolic Mathematics |
Chemometrics
Every Year Begins a Millennium  Jerry A. Bell
This article outlines a series of demonstrations and their contexts, leading to recommendations about what we teach and how we teach.
Bell, Jerry A. J. Chem. Educ. 2000, 77, 1098.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Kinetics |
Learning Theories
A Classroom Exercise in Sampling Technique  Michael R. Ross
A classroom hands-on demonstration has been developed that looks at the two important sampling considerations, sample size and non-homogeneous sample materials. This classroom activity makes use of readily available M&M candies for the sample size and NERDS for the non-homogeneous sample exercises.
Ross, Michael R. J. Chem. Educ. 2000, 77, 1015.
Quantitative Analysis |
Chemometrics
Paradoxes, Puzzles, and Pitfalls of Incomplete Combustion Demonstrations  Ed Vitz
Paper is burned in a closed container containing sufficient oxygen to consume all the paper. Paradoxically, the flame expires while half of the paper remains. This demonstrates that thermodynamics or stoichiometry is insufficient to explain everyday chemical processes, and that kinetics is often necessary. The gases in the container are analyzed by GC before and after combustion, and the results are examined in detail.
Vitz, Ed. J. Chem. Educ. 2000, 77, 1011.
Gases |
Kinetics |
Stoichiometry
Spreadsheet Calculation of the Propagation of Experimental Imprecision  Robert de Levie
A spreadsheet is used to compute the propagation of imprecision, and a macro is described that will do this automatically.
de Levie, Robert. J. Chem. Educ. 2000, 77, 534.
Chemometrics |
Quantitative Analysis |
Laboratory Computing / Interfacing
Modeling Chemical Processes in Seawater Aquaria to Illustrate Concepts in Undergraduate Chemistry  Gordan Grguric
This paper describes three exercises which can be used in a variety of undergraduate chemistry curricula: (i) determining the salts and their amounts needed to prepare a given volume of artificial seawater, (ii) modeling aqueous carbonate equilibria, to calculate pH and alkalinity shifts through additions of chemicals, and (iii) modeling chemical kinetics involved in aqueous ozone-bromine reactions, to predict the type and extent of disinfection by-products.
Grguric, Gordan. J. Chem. Educ. 2000, 77, 495.
Aqueous Solution Chemistry |
Equilibrium |
Kinetics |
Applications of Chemistry
Experiments with Aspirin  Londa L. Borer and Edward Barry
Experiments include (i) synthesis, purification, and characterization of aspirin by mp and TLC, (ii) percentage composition of a commercial aspirin tablet by titration, (iii) kinetics of the hydrolysis of aspirin to salicylic acid under various conditions, (iv) synthesis and characterization of copper(II) aspirinate and copper(II) salicylate, and (v) reaction of copper(II) aspirinate in aqueous solution.
Borer, Londa L.; Barry, Edward. J. Chem. Educ. 2000, 77, 354.
Synthesis |
Kinetics |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Aromatic Compounds
The Blue Bottle Reaction as a General Chemistry Experiment on Reaction Mechanisms  Steven C. Engerer and A. Gilbert Cook
Using the scientific method (observe, question, hypothesize, experiment, repeat) students propose and test possible reaction mechanisms for the methylene blue-catalyzed oxidation of dextrose with its dramatic color change. Students are led to discover the three-step mechanism through a series of questions.
Engerer, Steven C.; Cook, A. Gilbert. J. Chem. Educ. 1999, 76, 1519.
Aqueous Solution Chemistry |
Kinetics |
Mechanisms of Reactions
Lightstick Kinetics  Charles E. Roser and Catherine L. McCluskey
This experiment determines the energy of activation of the luminescent reaction in a lightstick by measuring the light intensity relative to temperature using Vernier light and temperature sensors, a Texas Instruments CBL interface, and a TI-82/83 graphing calculator.
Roser, Charles E.; McCluskey, Catherine L. J. Chem. Educ. 1999, 76, 1514.
Kinetics |
Photochemistry
Old Rule of Thumb and the Arrhenius Equation  I. A. Leenson
The empirical rule (doubling of the reaction rate upon every 10 increase in temperature) is discussed on the basis of the Arrhenius equation and experimental data. A graph is plotted that shows the applicability limits of the empirical rule in terms of activation energies and temperatures.
Leenson, Ilya A. J. Chem. Educ. 1999, 76, 1459.
Kinetics
Predicting Acid-Base Titration Curves without Calculations  Dennis W. Barnum
In this paper a qualitative and systematic method for sketching titration curves is presented. Even the more complex cases such as salts or polyprotic acids and bases are treated just as easily as simple monoprotic acids. Having students predict the shape of titration curves from known equilibrium constants helps to focus attention on the general principles without distraction by the mathematics.
Barnum, Dennis W. J. Chem. Educ. 1999, 76, 938.
Acids / Bases |
Quantitative Analysis |
Water / Water Chemistry |
Equilibrium |
Learning Theories |
Titration / Volumetric Analysis |
Chemometrics
Do pH in Your Head  Addison Ault
Every aqueous solution has a pH. Two factors determine this pH: the acidic or basic strength of the solute, and its concentration. When you use pKa values to express acidic and basic strength you can easily estimate the approximate pH of many aqueous solutions of acids, bases, and their salts and their buffers.
Ault, Addison. J. Chem. Educ. 1999, 76, 936.
Equilibrium |
Acids / Bases |
Aqueous Solution Chemistry |
Learning Theories |
Chemometrics |
Brønsted-Lowry Acids / Bases
The o-Phenylenediamine-Horseradish Peroxidase System: Enzyme Kinetics in the General Chemistry Laboratory  T. M. Hamilton, A. A. Dobie-Galuska, and S. M. Wietstock
The purpose of the experiment is to measure the kinetic parameters in the oxidative coupling reaction of o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP), a reaction catalyzed by the enzyme horseradish peroxidase (HRP).
Hamilton, Todd M.; Dobie-Galuska, A. A.; Wietstock, S. M. J. Chem. Educ. 1999, 76, 642.
Enzymes |
Kinetics |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy
Using CBL Technology and a Graphing Calculator To Teach the Kinetics of Consecutive First-Order Reactions  José E. Cortés-Figueroa and Deborah A. Moore
This work proposes a demonstration to introduce first-order reactions using the CBL system. It then presents the analysis of two consecutive first-order reactions. The values of the rate constants that govern each reaction's rate are determined using the graphing and statistical capabilities of a TI-83 calculator.
Cortés-Figueroa, José E.; Moore, Deborah A. J. Chem. Educ. 1999, 76, 635.
Kinetics |
Laboratory Computing / Interfacing |
Rate Law
A New Twist on the Iodine Clock Reaction: Determining the Order of a Reaction  Xavier Creary and Karen M. Morris
The iodine clock reaction can be used to illustrate the kinetic order of a reaction, and an overhead projector demonstration was developed three years ago for general chemistry classes at the University of Notre Dame showing this concept.
Creary, Xavier; Morris, Karen M. J. Chem. Educ. 1999, 76, 530.
Aqueous Solution Chemistry |
Kinetics
Equilibrium Principles: A Game for Students  Lionel J. Edmonson Jr. and Don L. Lewis
The laboratory exercise is a game using marked sugar cubes as dice. The game emphasizes the dynamic character of equilibrium. Forward and reverse rate-constant values are used to calculate an equilibrium constant and to predict equilibrium populations. Predicted equilibrium populations are compared with experimental results.
Edmonson, Lionel J., Jr.; Lewis, Don L. J. Chem. Educ. 1999, 76, 502.
Equilibrium |
Kinetics
Precision and Accuracy in Measurements (the author replies)  Treptow, Richard S.
Relation between instrument resolution and skill.
Treptow, Richard S. J. Chem. Educ. 1999, 76, 471.
Chemometrics |
Instrumental Methods
Precision and Accuracy in Measurements  Thomsen, Volker
The difference between instrument resolution and precision.
Thomsen, Volker J. Chem. Educ. 1999, 76, 471.
Chemometrics |
Instrumental Methods
Alka Seltzer Poppers: An Interactive Exploration  A. M. Sarquis and L. M. Woodward
This experiment illustrates concepts concerning the pressure-volume relationship of gases, solubility relationships of both gases and solids in liquids relative to temperature, the kinetics of the reaction of Alka Seltzer in water, and acid-base chemistry.
Sarquis, Arlyne M.; Woodward, L. M. J. Chem. Educ. 1999, 76, 385.
Acids / Bases |
Gases |
Kinetics |
Aqueous Solution Chemistry
An Easy and Effective Classroom Demonstration of Population Distributions  Marjorie A. Jones
Using a simple experimental design and easily obtained materials, a classroom experiment was conducted to demonstrate normal-distribution behavior for a population. We used popcorn and a hot-air popper. Popped kernels were collected with time and data were plotted as popped kernels per time interval versus time. The data clearly showed a normal (Gaussian) distribution.
Jones, Marjorie A. J. Chem. Educ. 1999, 76, 384.
Chemometrics
The Fizz Keeper, a Case Study in Chemical Education, Equilibrium, and Kinetics  Reed Howald
The chemistry of the loss of carbonation from carbonated beverages on storage is considered. Increasing the pressure of CO2(g) will restore carbonation, but an increase in pressure adding air should not affect the equilibria. It can and does, however, affect the kinetics-the rate at which a new equilibrium is established. Thus the Fizz Keeper is effective for storage of resealed pop containers for hours, but not for periods of weeks or months.
Howald, Reed. J. Chem. Educ. 1999, 76, 208.
Transport Properties |
Equilibrium |
Gases |
Kinetics |
Aqueous Solution Chemistry |
Consumer Chemistry |
Applications of Chemistry
Effect of Sample Size on Sampling Error: An Experiment for Introductory Analytical Chemistry  Joseph E. Vitt and Royce C. Engstrom
Students acquire samples of various size from a binary population, calculate the relative standard deviations for each sample size, and compare these results with those predicted by the binomial distribution. This experiment gives excellent agreement for the pooled student data, and the results show the expected decrease in sampling error as the sample size increases.
Vitt, Joseph E.; Engstrom, Royce C. J. Chem. Educ. 1999, 76, 99.
Quantitative Analysis |
Instrumental Methods |
Chemometrics
CHEMiCALC (4000161) and CHEMiCALC Personal Tutor (4001108), Version 4.0 (by O. Bertrand Ramsay)  Scott White and George Bodner
CHEMiCALC is a thoughtfully designed software package developed for use by high school and general chemistry students, who will benefit from the personal tutor mode that helps to guide them through unit conversion, empirical formula, molecular weight, reaction stoichiometry, and solution stoichiometry calculations.
White, Scott; Bodner, George M. J. Chem. Educ. 1999, 76, 34.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
On the Surface: Mini-Activities Exploring Surface Phenomena  
Activities listed can be used to introduce surface tension and surface area when discussing liquids and gases.
J. Chem. Educ. 1998, 75, 176A.
Surface Science |
Liquids |
Gases |
Kinetics
Temperature Scale Conversion as a Linear Equation: True Unit Conversion vs Zero-Offset Correction  Reuben Rudman
The equation used for the interconversion between the Fahrenheit and Celsius temperature scales is in reality the general case of the straight-line equation (y = ax + b). This equation is the paradigm for many of the calculations taught in introductory chemistry.
Rudman, Reuben. J. Chem. Educ. 1998, 75, 1646.
Nomenclature / Units / Symbols |
Chemometrics
The Blue Bottle Experiment-Simple Demonstration of Self-Organization  L'ubica Adamcíková and Peter Sevcík
This article describes a pattern that is formed in the blue bottle experiment.
Adamcíková, L'ubica; Sevcík, Peter. J. Chem. Educ. 1998, 75, 1580.
Catalysis |
Dyes / Pigments |
Kinetics
Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics  Kent J. Crippen and Robert D. Curtright
A four-part activity utilizing a graphing calculator to investigate nuclear stability is described. Knowledge acquired through the activity provides background for answering the societal question of using nuclear materials for energy production.
Crippen, Kent J.; Curtright, Robert D. J. Chem. Educ. 1998, 75, 1434.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Chemometrics
A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar  Natalie Hershlag, Ian Hurley, and Jonathan Woodward
In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. No sophisticated or expensive hydrogen detection equipment is required-only a redox dye, benzyl viologen, which turns purple when it is reduced. The color can be detected by a simple colorimeter.
Hershlag, Natalie; Hurley, Ian; Woodward, Jonathan. J. Chem. Educ. 1998, 75, 1270.
Enzymes |
Kinetics |
UV-Vis Spectroscopy |
Carbohydrates |
Applications of Chemistry
Why the Arrhenius Equation Is Always in the "Exponentially Increasing" Region in Chemical Kinetic Studies  Harvey F. Carroll
The Arrhenius equation in chemical kinetics, k = Ae-Ea/RT, has, as T gets larger, an inflection point where it changes from an "exponentially increasing" curve to one approaching an asymptote of A. The inflection point occurs at T = Ea/2R. For any activation energy, the inflection point occurs at such a high temperature that chemical kinetic studies would not be possible. Thus, the Arrhenius equation always appears to be exponentially increasing in any chemical kinetic studies of interest.
Carroll, Harvey F. J. Chem. Educ. 1998, 75, 1186.
Kinetics
The Reaction of a Food Colorant with Sodium Hypochlorite: A Student-Designed Kinetics Experiment  Josefina Arce, Rosa Betancourt, Yamil Rivera, and Joan Pijem
The kinetics of the reaction of the food colorant FD&C Blue #1 with sodium hypochlorite (Clorox) is described in a student-designed experimental format. In this format, students are guided- by means of questions- to make decisions regarding concentration of reagents, choice of equipment, and actual laboratory procedures to be followed.
Arce, Josefina; Betancourt-Perez, Rosa; Rivera, Yamil; Pijem, Joan. J. Chem. Educ. 1998, 75, 1142.
Kinetics |
UV-Vis Spectroscopy |
Dyes / Pigments
Chemistry Time: Factors Affecting the Rate of a Chemical Reaction  
This activity can be used to introduce a unit on chemical kinetics, but it is simple enough to be used in a discussion of chemical reactions or experimental methods/procedures during the first weeks of the semester. The activity involves reacting bicarbonate with acid, a reaction with practical applications in everyday life.
J. Chem. Educ. 1998, 75, 1120A.
Kinetics |
Rate Law
Limiting Reagent and Kinetics: Social Implications and Malthus' Prediction  L. H. Holmes Jr.
Robert Malthus predicted in the early 1800s that man would outstrip his food supply. The amount of carbon on earth is the ultimate limiting reagent for the number of people the earth can have and in the sense that carbon is our "food", Malthus was right. However, the land area of the earth is a "limiting reagent" that will limit our population before carbon does. These concepts are discussed in the context of limiting reagents and chemical kinetics to show that if the rate of increase of population remains at what it is now, we have less than a thousand years to "solve" the problem.
Holmes, L. H., Jr. J. Chem. Educ. 1998, 75, 1004.
Kinetics
Ernest Rutherford, Avogadro's Number, and Chemical Kinetics  I. A. Leenson
The paper presents a way for students to use data from Rutherford's works (1908 - 1911) in order to determine one of the most precise values of Avogadro Constant available at the beginning of the century.
Leenson, I. A. J. Chem. Educ. 1998, 75, 998.
Learning Theories |
Nuclear / Radiochemistry |
Kinetics
There Seems To Be Uncertainty about the Use of Significant Figures in Reporting Uncertainties of Results  Julio F. Caballero and Delphia F. Harris
A cursory review of two journals indicates that uncertainties in experimental results are not consistently reported in the literature with the correct number of significant figures. The problem seems more frequent in computer generated results in both chemical education and research articles. Examples of published values with uncertainty inappropriately reported are included along with the appropriate rounding.
Caballero, Julio F.; Harris, Delphia F. J. Chem. Educ. 1998, 75, 996.
Laboratory Equipment / Apparatus |
Learning Theories |
Chemometrics
Precision and Accuracy in Measurements: A Tale of Four Graduated Cylinders  Richard S. Treptow
The concepts of precision and accuracy help students understand that uncertainty accompanies even our best scientific measurements. A model experiment can be used to distinguish the two terms. The experiment uses four graduated cylinders which give measurements of different accuracy and precision. Such terms as mean, range, standard deviation, error, and true value are defined through an illustration.
Treptow, Richard S. J. Chem. Educ. 1998, 75, 992.
Quantitative Analysis |
Chemometrics
Precision and Accuracy (the authors reply, 2)  Midden, W. Robert
Rounding-off rules and significant figures.
Midden, W. Robert J. Chem. Educ. 1998, 75, 971.
Chemometrics
Precision and Accuracy (the authors reply, 1)  Guare, Charles J.
Rounding-off rules and significant figures.
Guare, Charles J. J. Chem. Educ. 1998, 75, 971.
Chemometrics
Precision and Accuracy (3)  Rustad, Douglas
Rounding-off rules and significant figures.
Rustad, Douglas J. Chem. Educ. 1998, 75, 970.
Chemometrics
Precision and Accuracy (1)  Sykes, Robert M.
Standard procedures for determining and maintaining significant figures in calculations.
Sykes, Robert M. J. Chem. Educ. 1998, 75, 970.
Chemometrics
Percent Composition and Empirical Formula - A New View  George L. Gilbert
A new method of obtaining the empirical formula for a compound from its percent composition is proposed. The method involves the determination of a minimum molar mass for the compound based on the percentage of each element, obtaining the lowest common molar mass and using this data to calculate the integer values used in writing the empirical formula.
Gilbert, George L. J. Chem. Educ. 1998, 75, 851.
Atomic Properties / Structure |
Stoichiometry |
Chemometrics
Audience-Appropriate Analogies: Collision Theory  Kent W. Piepgrass
This article presents two new analogies for collision theory based on arcade games and on the interactions between salesclerks and customers in a store. The uses, limitations, and possible extensions of the analogies are discussed.
Piepgrass, Kent W. J. Chem. Educ. 1998, 75, 724.
Learning Theories |
Mechanisms of Reactions |
Kinetics
An Analogy to Help Students Understand Reaction Orders  Charles J. Marzzacco
This article describes a simple analogy to help students understand the concept of the rate law for a chemical reaction. The analogy involves the mathematical relationships between various characteristics of a cube and the length of its edge.
Charles J. Marzzacco. J. Chem. Educ. 1998, 75, 482.
Learning Theories |
Kinetics |
Rate Law
Production of Numerical Chemical Problems Using a Spreadsheet  Peter G. Hall
The use of spreadsheets for "personalized" assignments. These assignments take the form of printed chemical problems such that every student has different numerical data. The problem sets make a challenging student introduction to word processing and spreadsheet use.
Hall, Peter G. J. Chem. Educ. 1998, 75, 243.
Chemometrics
Small-Scale Kinetic Study of the Catalyzed Decomposition of Hydrogen Peroxide  Ronald O. Ragsdale, Jan C. Vanderhooft , and Arden P. Zipp
The decomposition of hydrogen peroxide can be studied directly and quickly by determining the rate of formation of oxygen bubbles produced. This experiment, like the iodine clock reaction, provides quantitative measurements for a general chemistry course.
Ragsdale, Ronald O.; Vanderhooft , Jan C.; Zipp, Arden P. J. Chem. Educ. 1998, 75, 215.
Catalysis |
Kinetics |
Microscale Lab
A Kinetics Experiment To Demonstrate the Role of a Catalyst in a Chemical Reaction: A Versatile Exercise for General or Physical Chemistry Students  Christine L. Copper and Edward Koubek
By modifying the iodine clock reaction, students can use the initial rate method to observe the role of a catalyst in a chemical reaction via activation energy calculations and evaluate a proposed mechanism. They can also determine the order with respect to each reactant and the rate constants of the noncatalyzed and catalyzed reactions.
Copper, Christine L.; Koubek, Edward. J. Chem. Educ. 1998, 75, 87.
Catalysis |
Kinetics |
Mechanisms of Reactions
The Chemistry Maths Book (by Erich Steiner)   C. Michael McCallum
The Chemistry Maths Book contains all the mathematical methods that 99% of chemists would need. Designed as a text for an actual Maths for Chemists course, it is laid out in a logical progression from simple (decimals, algebra, and functions) to the more complicated but no less important (matrix algebra, differential equations, and matrix eigenvalue problems). It seems well suited both for its stated purpose and as a "brush-up" book for undergraduates, graduate students, and others.
McCallum, C. Michael. J. Chem. Educ. 1997, 74, 1400.
Chemometrics |
Mathematics / Symbolic Mathematics
A Note on Covariance in Propagation of Uncertainty  Edwin F. Meyer
It is pointed out that whenever both the slope and the intercept are used in calculating a physical quantity from a linear regression, propagation of error must include the covariance as well as the variances. The point is illustrated with a calculation of the boiling point of water from the parameters of the lnP vs 1/T fit. If the covariance is omitted from the propagation of error, the estimate of uncertainty is unreasonably large.
Meyer, Edwin F. J. Chem. Educ. 1997, 74, 1339.
Chemometrics
Spreadsheet Applications in Chemistry Using Microsoft Excel by Dermot Diamond and Venita C. A. Hanratty  Jeffery A. Greathouse
Provides chemistry instructors with an introduction to Excel and its applications in chemistry.
Greathouse, Jeffery A. J. Chem. Educ. 1997, 74, 1279.
Chemometrics
MathBrowser: Web-Enabled Mathematical Software with Application to the Chemistry Curriculum, v 1.0  Jack G. Goldsmith
MathBrowser, a freeware web-enabled derivative of the MathCad mathematical software (MathSoft Inc., Cambridge, MA), is designed to reconcile the problem of how to distribute mathematically rich information over the WWW and to maintain interactivity for the end user.
Goldsmith, Jack G. J. Chem. Educ. 1997, 74, 1164.
Mathematics / Symbolic Mathematics |
Chemometrics
Graham's Law and Perpetuation of Error  Stephen J. Hawkes
Grahams Laws of effusion and diffusion are used in recent articles for traditional experiments to which they do not in fact apply and for which they give the wrong answer.
Hawkes, Stephen J. J. Chem. Educ. 1997, 74, 1069.
Gases |
Chemometrics |
Transport Properties
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
Kinetics Studies in a Washing Bottle  John Teggins and Chris Mahaffy
The kinetics of the decomposition of hydrogen peroxide using iodide ion in aqueous solution is studied in sealed completely-filled washing bottles.
Teggins, John; Mahaffy, Chris. J. Chem. Educ. 1997, 74, 566.
Kinetics |
Aqueous Solution Chemistry |
Gases
The Coupling of Related Demonstrations to Illustrate Principles in Chemical Kinetics and Equilibrium  Richard A. Pacer
Two very simple lecture demonstrations, both involving the reaction of magnesium with one or more dilute acids, are linked together to illustrate principles in chemical kinetics and equilibrium.
Pacer, Richard A. J. Chem. Educ. 1997, 74, 543.
Learning Theories |
Acids / Bases |
Equilibrium |
Kinetics |
Rate Law |
Reactions
Dice Shaking as an Analogy for Radioactive Decay and First Order Kinetics  Emeric Schultz
An experiment involving the shaking of sets of different sided dice is described. Dice of 4, 6, 8, 10, 12 and 20 sides are readily available. This experiment serves as an easily understood analogy for radioactive decay and for the more general case of first order kinetics.
Schultz, Emeric. J. Chem. Educ. 1997, 74, 505.
Kinetics |
Nuclear / Radiochemistry
Rounding Numbers: Why the "New System" Doesn't Work  W. Robert Midden
This paper explains a correction to the rounding rule previously published in this Journal. The earlier article reported that the best way to round numbers is to always round up when the first digit dropped is 5. However, this will lead to accumulation of error when errors are averaged.
Midden, W. Robert. J. Chem. Educ. 1997, 74, 405.
Chemometrics
Sensitivity to Experimental Parameters via Spreadsheets  B. R. Sundheim
In spreadsheet computations wherever the functional dependence of calculated results on experimental quantities is obscure, sensitivities may be obtained by testing the effects of variations in relevant inputs. An example is given where Hess' law is explored calorimetrically.
Sundhein, B. R. . J. Chem. Educ. 1997, 74, 328.
Chemometrics
Inflation Rates, Car Devaluation, and Chemical Kinetics  Lionello Pogliani, Màrio N. Berberan-Santos
The inflation rate problem of a modern economy shows quite interesting similarities with chemical kinetics and especially with first-order chemical reactions.
Pogliani, Lionello; Berberan-Santos, Màrio N. J. Chem. Educ. 1996, 73, 950.
Kinetics |
Rate Law
Iodine Clock Reaction  Richard S. Mitchell
The study of kinetics using the iodine clock reaction has provided an interesting experience for students for many years.
Mitchell, Richard S. J. Chem. Educ. 1996, 73, 783.
Kinetics |
Laboratory Management
The Iodide-Catalyzed Decomposition of Hydrogen Peroxide: A Simple Computer-Interfaced Kinetics Experiment for General Chemistry  John C. Hansen
188. The reaction studied is the iodide-catalyzed decomposition of hydrogen peroxide. The rate of oxygen production is measured as a function of time using a computer-interfaced pressure transducer.
Hansen, John C. J. Chem. Educ. 1996, 73, 728.
Rate Law |
Kinetics |
Catalysis |
Oxidation / Reduction
SIRS: Simulations and Interactive Resources, III  Martin, John S.
Simulations and Interactive Resources (SIRs) are designed to support interactive lectures in introductory chemistry. This third issue of SIRs includes five new SIRs as well as updated and final versions of all previously published SIRs.
Martin, John S. J. Chem. Educ. 1996, 73, 722.
Periodicity / Periodic Table |
Equilibrium |
Gases |
Thermodynamics |
Reactions |
Electrochemistry |
Kinetics
Reduction of Viologen Bisphosphonate Dihalide with Aluminum Foil  Peter Abeta Iyere
An elegant undergraduate experiment similar to the popular "Iodine Clock Reaction" employs the reduction of methyl viologen by hydroxide ion. This demonstration can be used as prelaboratory discussion for an undergraduate kinetic experiment based on the same phenomenon.
Iyere, Peter Abeta. J. Chem. Educ. 1996, 73, 455.
Kinetics |
Equilibrium
Lightstick Magic: Determination of the Activation Energy with PSL  Thomas H. Bindel
The energy of activation of the light-producing reaction in a lightstick is determined in two different ways. Each depends upon a computer-assisted collection of data from both a light probe and temperature probe. One of them is novel in that data is collected under nonisothermal conditions.
Bindel, Thomas H. J. Chem. Educ. 1996, 73, 356.
Laboratory Computing / Interfacing |
Kinetics
Colorful Kinetics  Gabriela C. Weaver and Doris R. Kimbrough
We present the details of an overhead projector demonstration to show the concentration dependence of reaction rates.
Weaver, Gabriela C.; Kimbrough, Doris R. J. Chem. Educ. 1996, 73, 256.
Rate Law |
Kinetics
Curve Fitting: An Alternative Approach to Analyzing Kinetic Data in Introductory Chemistry  Coleman, William F.
183. The availability of high quality software for performing nonlinear curve fitting on microcomputers allows students to take an alternative approach to data analysis, one that concentrates on functional forms that may be more natural than some of the algebraic machinations necessary to render relationships into linear forms. An example of the application of such an approach to the analysis of kinetic data is presented in this paper.
Coleman, William F. J. Chem. Educ. 1996, 73, 243.
Chemometrics |
Kinetics
Significant Figures in Graph Interpretation  Donald M. Graham
A means is derived for calculating the number of significant figures in the slope and intercept of an experimental linear graph. The method is based on the actual scatter in the points rather than on the nominal precision in the original data, and it can be used even by students who are mathematically fairly unsophisticated.
Graham, Donald M. J. Chem. Educ. 1996, 73, 211.
Chemometrics
Management of First-Year Chemistry Laboratories Using Spreadsheets  Collins, Frank E.; Williams, Charles W.
Use of spreadsheets to record, analyze, and assess experimental data.
Collins, Frank E.; Williams, Charles W. J. Chem. Educ. 1995, 72, A182.
Chemometrics
Experimental Methods: An Introduction to the Analysis of Data (Kirkup, Les)  
Title of interest.
J. Chem. Educ. 1995, 72, A72.
Chemometrics
Dimensional Analysis: An Analogy to Help Students Relate the Concept to Problem Solving  James R. McClure
Using dominoes to help students understand the conversion factor method of dimensional analysis.
McClure, James R. J. Chem. Educ. 1995, 72, 1093.
Nomenclature / Units / Symbols |
Chemometrics
Celsius to Fahrenheit--Quick and Dirty  Colin Hester
Simple algorithm for converting Celsius temperature to Fahrenheit temperature.
Hester, Colin. J. Chem. Educ. 1995, 72, 1026.
Calorimetry / Thermochemistry |
Nomenclature / Units / Symbols |
Chemometrics
Those Baffling Subscripts  Arthur W. Friedel and David P. Maloney
Study of the difficulties students have in interpreting subscripts correctly and distinguishing atoms from molecules when answering questions and solving problems.
Friedel, Arthur W.; Maloney, David P. J. Chem. Educ. 1995, 72, 899.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
How to Determine the Best Straight Line  S. R. Logan
Consideration of situations in which the use of a least-squares regression is inappropriate.
Logan, S. R. J. Chem. Educ. 1995, 72, 896.
Chemometrics
The Relationship between the Number of Elements and the Number of Independent Equations of Elemental Balance in Inorganic Chemical Equations  R. Subramanian, N.K. Goh, and L. S. Chia
The criterion for determining whether a chemical equation can be balanced fully by the algebraic technique and its application.
Subramaniam, R.; Goh, N. K.; Chia, L. S. J. Chem. Educ. 1995, 72, 894.
Stoichiometry |
Chemometrics
From Titration Data to Buffer Capacities: A Computer Experiment for the Chemistry Lab or Lecture  Roy W. Clark, Gary D. White, Judith M. Bonicamp, and Exum D. Watts
Provides titration curve data that students can plot and analyze using spreadsheets to develop student understanding of pH, derivatives, buffer capacity, and the behavior of dilute buffers; includes sample graphs and analysis.
Clark, Roy W.; White, Gary D.; Bonicamp, Judith M.; Watts, Exum D. J. Chem. Educ. 1995, 72, 746.
Acids / Bases |
pH |
Titration / Volumetric Analysis |
Chemometrics
Statistical Analysis Experiment for the Freshman Chemistry Lab   John C. Salzsieder
Procedure that provides sufficient data for statistical analysis by a freshman chemistry class.
Salzsieder, John C. J. Chem. Educ. 1995, 72, 623.
Chemometrics
Buoyancy Programs; Viscosity of Polymer Solutions; Precision of Calculated Values  Bertrand, Gary L.
Software to simulate the determination of the density of solids; the preparation of polymer solutions and their time to flow through a viscometer; and a program to calculate the uncertainties of results given the input values.
Bertrand, Gary L. J. Chem. Educ. 1995, 72, 492.
Physical Properties |
Chemometrics
Rapid Calculation for Preparing Solutions  Calero, Diego Lozano
Streamlined method for dilution calculations.
Calero, Diego Lozano J. Chem. Educ. 1995, 72, 424.
Aqueous Solution Chemistry |
Solutions / Solvents |
Chemometrics
The MATCH Program: A Combined Mathematics and Chemistry Curriculum  Wink, Donald J.
A curriculum that integrates introductory chemistry with intermediate algebra.
Wink, Donald J. J. Chem. Educ. 1995, 72, 411.
Chemometrics
Spreadsheet-Controlled Potentiometric Analyses  Mullin, Jerome; Marquardt, Michael
173. Bits and pieces, 53. Discussion of collecting experimental data on spreadsheets directly from laboratory instruments.
Mullin, Jerome; Marquardt, Michael J. Chem. Educ. 1995, 72, 400.
Laboratory Computing / Interfacing |
Chemometrics |
Potentiometry
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
REACT: Exploring Practical Thermodynamic and Equilibrium Calculations  Ramette, Richard W.
Description of REACT software to balance complicated equations; determine thermodynamic data for all reactants and products; calculate changes in free energy, enthalpy, and entropy for a reaction; and find equilibrium conditions for the a reaction.
Ramette, Richard W. J. Chem. Educ. 1995, 72, 240.
Stoichiometry |
Equilibrium |
Thermodynamics |
Chemometrics
Measuring with a Purpose: Involving Students in the Learning Process  Metz, Patricia A.; Pribyl, Jeffrey R.
Constructivist learning activities for helping students to understand measurement, significant figures, uncertainty, scientific notation, and unit conversions.
Metz, Patricia A.; Pribyl, Jeffrey R. J. Chem. Educ. 1995, 72, 130.
Nomenclature / Units / Symbols |
Chemometrics |
Constructivism
Introducing Spreadsheet Data Analysis in the First-Semester Laboratory  Bushey, Michelle M.
Massing a collection of pennies in order to introduce statistical concepts about small and large data sets as well as introduce students to the use of spreadsheets.
Bushey, Michelle M. J. Chem. Educ. 1994, 71, A90.
Chemometrics
Spreadsheet Statistics  Simpson, John M.
Using computer spreadsheets to do statistical analysis on data.
Simpson, John M. J. Chem. Educ. 1994, 71, A88.
Chemometrics
Chemical Equilibrium in the General Chemistry Course  Fainzilberg, Vladimir E.; Karp, Stewart
The first chapters on chemical equilibrium in first-year college chemistry texts make an "error" in the solution of certain types of equilibria problems.
Fainzilberg, Vladimir E.; Karp, Stewart J. Chem. Educ. 1994, 71, 769.
Equilibrium |
Kinetics
Kinetics of Chemical Reactions: A Low-Cost and Simple Appartus  Papageorgiou, G.; Ouzounis, K.; Xenos, J.
Description, applications, and experiments for a simple and inexpensive apparatus to help students understand kinetics.
Papageorgiou, G.; Ouzounis, K.; Xenos, J. J. Chem. Educ. 1994, 71, 647.
Laboratory Equipment / Apparatus |
Reactions |
Kinetics
Symbolic Algebra and Stoichiometry  DeToma, Robert P.
Applying symbolic algebra (instead of the factor-label method) to stoichiometry calculations.
DeToma, Robert P. J. Chem. Educ. 1994, 71, 568.
Chemometrics |
Nomenclature / Units / Symbols
A Simple Laboratory Experiment Using Popcorn To Illustrate Measurement Errors  Kimbrough, Doris R.; Meglen, Robert R.
This experiment focuses on the difference between accuracy and precision and demonstrates the necessity for multiple measurements of an experimental variable.
Kimbrough, Doris R.; Meglen, Robert R. J. Chem. Educ. 1994, 71, 519.
Chemometrics
An Oscillating Reaction as a Demonstration of Principles Applied in Chemistry and Chemical Engineering  Weimer, Jeffrey J.
Platinum catalyzed decomposition of methanol.
Weimer, Jeffrey J. J. Chem. Educ. 1994, 71, 325.
Thermodynamics |
Catalysis |
Transport Properties |
Kinetics |
Reactions
A Joke Based on Significant Figures  Ruekberg, Ben
Joke to introduce significant figures.
Ruekberg, Ben J. Chem. Educ. 1994, 71, 306.
Chemometrics
KineticsLab: The Crystal Violet/Sodium Hydroxide Reaction  Cannon, John F.; Gammon, Steven D.; Hunsberger, Lynn R.
A computer-assisted experiment to collect and analyze data for a kinetic study of the decolorization of crystal violet in basic solution.
Cannon, John F.; Gammon, Steven D.; Hunsberger, Lynn R. J. Chem. Educ. 1994, 71, 238.
Kinetics |
Rate Law |
Reactions
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
Solving equilibria problems with a graphing calculator: A robust method, free of algebra and calculus   Ruch, David K.; Chasteen, T. G.
The method of successive approximations is frequently introduced in freshman chemistry as a means for solving equilibrium equations. However, this often requires an understanding of calculus that is problematic for introductory chemistry students. An alternative method to solving such equations is to use graphic calculators to solve problems graphically.
Ruch, David K.; Chasteen, T. G. J. Chem. Educ. 1993, 70, A184.
Equilibrium |
Chemometrics
Shell thickness of the copper-clad cent   Vanselow, Clarence H.; Forrester, Sherri R.
An exercise in determining the thickness of the copper layer of modern pennies presents the opportunities to combine good chemistry, instrumentation, simple curve fitting, and geometry to solve a simply stated problem.
Vanselow, Clarence H.; Forrester, Sherri R. J. Chem. Educ. 1993, 70, 1023.
Metals |
Quantitative Analysis |
Chemometrics
The activation energy of a slap bracelet   Kramer, F. Axtell.
This accessory/toy can be used to help students understand activation energy.
Kramer, F. Axtell. J. Chem. Educ. 1993, 70, 1002.
Kinetics |
Reactions |
Calorimetry / Thermochemistry
Photodegradation of methylene blue: Using solar light and semiconductor (TiO2)  Nogueira, Raquel F. P.; Jardim, Wilson F.
An experiment that can be used to introduce or explore concepts such as photochemistry, semiconductors, and kinetics.
Nogueira, Raquel F. P.; Jardim, Wilson F. J. Chem. Educ. 1993, 70, 861.
Semiconductors |
Photochemistry |
Kinetics |
Catalysis |
MO Theory
How thick/thin is your mirror?  McCullough, Thomas; Bell, Lisa
When a student reported that his/her water film was 6 cm thick, these authors felt a review of significant figures and dimensional analysis may be in order.
McCullough, Thomas; Bell, Lisa J. Chem. Educ. 1993, 70, 851.
Chemometrics
Measurement scales: Changing Celsius to Kelvin is not just a unit conversion   Nordstrom, Brian H.
The key to understanding the difference between Celsius and Kelvin lies in the different types of measurement scales. Students may have an easier time manipulating equations (such as gas laws) if they knew the difference between these scales.
Nordstrom, Brian H. J. Chem. Educ. 1993, 70, 827.
Chemometrics |
Kinetic-Molecular Theory |
Gases
Statistical analysis of errors: A practical approach for an undergraduate chemistry lab: Part 1. The concepts  Guedens, W. J.; Yperman, J.; Mullens, J.; Van Poucke, L. C.; Pauwels, E. J.
A concise and practice-oriented introduction to the analysis and interpretation of measurement and errors.
Guedens, W. J.; Yperman, J.; Mullens, J.; Van Poucke, L. C.; Pauwels, E. J. J. Chem. Educ. 1993, 70, 776.
Chemometrics
Introducing probabilistic concepts in chemistry: The preparation of 10-24 M solution as a limiting case  de Vicente, M. Sastre
A straightforward dilution experiment that can be used as the starting point for establishing a link between chemistry and concepts of probability theory.
de Vicente, M. Sastre J. Chem. Educ. 1993, 70, 674.
Solutions / Solvents |
Chemometrics
Using the electrician's multimeter in the chemistry teaching laboratory: Part 1. Colorimetry and thermometry experiments  Andres, Roberto T.; Sevilla, Fortunato, III
The multimeter could be a very useful instrument for the chemistry laboratory bench. In this paper, the versatility of the multimeter in the chemistry teaching laboratory is demonstrated.
Andres, Roberto T.; Sevilla, Fortunato, III J. Chem. Educ. 1993, 70, 514.
Laboratory Equipment / Apparatus |
Equilibrium |
Stoichiometry |
Kinetics |
Calorimetry / Thermochemistry
AnswerSheets  Cornelius, Richard
Review of a spreadsheet-based program that has modules on significant figures, VSEPR structures, stoichiometry, and unit conversions.
Cornelius, Richard J. Chem. Educ. 1993, 70, 460.
VSEPR Theory |
Stoichiometry |
Chemometrics
A mole of M&M's   Merlo, Carmela; Turner, Kathleen E.
Engaging students by asking the question: How thick would the layer of M&M candies be if we covered the continental United States with a mole of these candies? Compare this to a mole of water.
Merlo, Carmela; Turner, Kathleen E. J. Chem. Educ. 1993, 70, 453.
Stoichiometry |
Chemometrics
AnswerSheets  Cornelius, Richard
Review of a spreadsheet-like program that includes modules on significant figures, conversions, stoichiometry, and VSEPR structures.
Cornelius, Richard J. Chem. Educ. 1993, 70, 387.
VSEPR Theory |
Stoichiometry |
Chemometrics
Empirical formulas from atom ratios: A simple method to obtain the integer factors of a rational number  Weltin, E.
Most textbooks advise students to use a method tantamount to trial and error when they encounter a ratio in empirical formula calculations where it is not immediately apparent what the coefficients should be. The author describes a simple procedure that is an effective way to find the integer factors.
Weltin, E. J. Chem. Educ. 1993, 70, 280.
Stoichiometry |
Chemometrics
Measuring Avogadro's number on the overhead projector   Solomon, Sally; Hur, Chinhyu
A Petri dish filled with water and stearic acid dissolved in petroleum ether upon an overhead projector can be used to introduce the topic of Avogadro's number.
Solomon, Sally; Hur, Chinhyu J. Chem. Educ. 1993, 70, 252.
Chemometrics |
Stoichiometry
Using monetary analogies to teach average atomic mass   Last, Arthur M.; Webb, Michael J.
Some strategies to overcome the frequent problem novice students have with calculating average atomic mass.
Last, Arthur M.; Webb, Michael J. J. Chem. Educ. 1993, 70, 234.
Chemometrics |
Stoichiometry
Relative atomic mass and the mole: A concrete analogy to help students understand these abstract concepts   de Sanabia, Josefina Arce
Suggestions on how to improve student understandings of the mathematical idea of "ratio" to enhance conceptual understanding of this fundamental chemistry concept.
de Sanabia, Josefina Arce J. Chem. Educ. 1993, 70, 233.
Chemometrics |
Stoichiometry
Concept learning versus problem solving: There is a difference   Nakhleh, Mary B.; Mitchell, Richard C.
Previous studies indicate that there is little connection between algorithmic problem solving skills and conceptual understanding. The authors provide some ways to evaluate students along a continuum of low-high algorithmic and conceptual problem solving skills. The study shows that current lecture method teaches students to solve algorithms rather than teaching chemistry concepts.
Nakhleh, Mary B.; Mitchell, Richard C. J. Chem. Educ. 1993, 70, 190.
Chemometrics |
Learning Theories |
Student-Centered Learning
An Investigative Density Experiment   Samsa, Richard A.
A laboratory exercise about density that is engaging and allows students to use higher-level thinking skills and develop a plan to solve a problem.
Samsa, Richard A. J. Chem. Educ. 1993, 70, 149.
Laboratory Computing / Interfacing |
Chemometrics |
Physical Properties
More on the Question of Significant Figures  Clase, Howard J.
Because so many students have a hard time understanding what significant figures are all about, this author developed a method using "?" to substitute for insignificant zeros. This helps many students finally grasp this convention.
Clase, Howard J. J. Chem. Educ. 1993, 70, 133.
Chemometrics
Equilibrium Calculator  Allendoerfer, Robert
The equilibrium calculator can calculate the equilibrium concentrations of all reagents in an arbitrary chemical reaction with as many as five reactants and products.
Allendoerfer, Robert J. Chem. Educ. 1993, 70, 126.
Equilibrium |
Chemometrics
Ideas of Equality and Ratio: Mathematical Basics for Chemistry and the Fallacy of Unitary Conversion   Ochiai, El-Ichiro.
The author argues against dimensional analysis (referred to as the "unitary conversion method" in this article) and champions the more elegant "ratio" or "equality" paradigms as a way to help students make sense of chemical equations and "de-algorithmize" chemical calculations at the introductory level.
Ochiai, El-Ichiro. J. Chem. Educ. 1993, 70, 44.
Chemometrics
Is Dimensional Analysis the Best We Have to Offer?  Canagaratna, Sebastian G.
Dimensional analysis is a unit based approach while the alternative, "method of equations" is a relations-based approach to solving mathematical problems. The author argues that quantitative chemistry involves relationships between quantities and not units, making the later method more pedagogically sound.
Canagaratna, Sebastian G. J. Chem. Educ. 1993, 70, 40.
Chemometrics
Applying a simple linear least-squares algorithm to data with uncertainties in both variables  Ogren, Paul J.; Norton, J. Russell
There are cases in which it is desirable to find an optimum linear least-squares fit to data with significant uncertainties in both the x and y variables.
Ogren, Paul J.; Norton, J. Russell J. Chem. Educ. 1992, 69, A130.
Chemometrics
Monitoring self-association of a hydrophobic peptide with high performance liquid chromatography: An undergraduate kinetic experiment using the antibiotic gramicidin A  Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin
The authors propose a kinetic experiment that uses high performance liquid chromatography to determine the rate and equilibrium constants in a very simple manner, and separate the molecular species under study.
Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin J. Chem. Educ. 1992, 69, A113.
HPLC |
Kinetics |
Proteins / Peptides |
Rate Law |
Equilibrium
An hydrogen sulfide free analytical technique for cation analysis: The statistical approach  Gaggero, Fernando Labandera; Luaces, Victor Martinez
In this analysis the study of each cation was carried out independently without taking into account the other cations present in the solutions.
Gaggero, Fernando Labandera; Luaces, Victor Martinez J. Chem. Educ. 1992, 69, 934.
Chemometrics |
Qualitative Analysis |
Precipitation / Solubility
Simple and inexpensive kinetics: A student laboratory experiment and demonstration   Erwin, David K.
Laboratory experimentation, as well as in-class demonstration, involving the study of chemical kinetics can be performed using this safe, simple, and inexpensive apparatus. This apparatus requires only that systems to be studied must produce a gaseous product that can displace water.
Erwin, David K. J. Chem. Educ. 1992, 69, 926.
Kinetics |
Qualitative Analysis |
Quantitative Analysis |
Rate Law |
Laboratory Equipment / Apparatus
Classroom experience: Using estimated answers in solving chemistry problems  Green, Michael E.; Garland, Denise A.
A textbook is described in which students solve all problems by estimation.
Green, Michael E.; Garland, Denise A. J. Chem. Educ. 1992, 69, 898.
Chemometrics |
Learning Theories
On the chemically impossible "other" roots in equilibrium calculations, II  Ludwig, Oliver G.
In a previous paper the author described, using mathematics accessible to students, how an equilibrium calculation leading to a quadratic equation may be shown to have but one "chemical" root. The present work extends this demonstration to some reactions leading to cubic equations.
Ludwig, Oliver G. J. Chem. Educ. 1992, 69, 884.
Chemometrics |
Equilibrium
The metric system  Mason, Lynn M.
Metric conversions commonly encountered in chemistry and biology, with tests over each lesson.
Mason, Lynn M. J. Chem. Educ. 1992, 69, 818.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Chemometrics
A demonstration of the molar volume of nitrogen gas  Hughes, Elvin, Jr.
A graphic illustration and a calculation of the approximate molar volume of nitrogen gas.
Hughes, Elvin, Jr. J. Chem. Educ. 1992, 69, 763.
Gases |
Chemometrics
Storing solar energy in calcium chloride  Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F.
Using common chemistry concepts to determine the feasibility of storing solar energy in calcium chloride hexahydrate.
Wilkins, Curtis C.; Hunter, Norman W.; Pearson, Earl F. J. Chem. Educ. 1992, 69, 753.
Calorimetry / Thermochemistry |
Stoichiometry |
Chemometrics
A graphing activity to freshen up the laboratory  Pribyl, Jeffrey R.
A laboratory activity designed to address students' difficulties in interpreting data from graphs and tables.
Pribyl, Jeffrey R. J. Chem. Educ. 1992, 69, 752.
Chemometrics
First-year chemistry laboratory calculations on a spreadsheet  Edwards, Paul A.; McKay, J. Brian; Sink, Charles W.
140. A laboratory exercise to introduce students to the use of computers and spreadsheets.
Edwards, Paul A.; McKay, J. Brian; Sink, Charles W. J. Chem. Educ. 1992, 69, 648.
Chemometrics
Three methods for studying the kinetics of the halogenation of acetone.  Birk, James P.; Walters, David L.
Three methods for carrying out a kinetic study of the reaction between propanone and elemental iodine.
Birk, James P.; Walters, David L. J. Chem. Educ. 1992, 69, 585.
Aldehydes / Ketones |
Kinetics |
Spectroscopy |
Rate Law
A mole of salt crystals-Or how big is the Avogadro number?  Hoyt, William.
Calculations designed to help students put the size of Avogadro's number into perspective.
Hoyt, William. J. Chem. Educ. 1992, 69, 496.
Nomenclature / Units / Symbols |
Chemometrics
A simple but effective demonstration for illustrating significant figure rules when making measurements and doing calculations  Zipp, Arden P.
Students can be surprised and confused when different arithmetical operations are performed on experimental data, because the rules change when changing from addition to subtraction to multiplication or division. The following is a simple way to illustrate several aspects of these rules.
Zipp, Arden P. J. Chem. Educ. 1992, 69, 291.
Chemometrics
The old Nassau demonstration: Educational and entertaining variations  Fortman, John J.
The Old Nassau reaction can be used to illustrate the effects of concentration and temperature on rates in a fun way.
Fortman, John J. J. Chem. Educ. 1992, 69, 236.
Kinetics |
Stoichiometry |
Rate Law
Spreadsheet titration of diprotic acids and bases  Breneman, G. L.; Parker, O. J.
133. Bits and pieces, 47. A spreadsheet and chart, set up using Excel, for showing titration curves of any diprotic acid or base is described.
Breneman, G. L.; Parker, O. J. J. Chem. Educ. 1992, 69, 46.
Acids / Bases |
Chemometrics |
Titration / Volumetric Analysis
Having fun with the metric system  Campbell, Mark L.
A puzzle adds some fun to the mundane treatment of the metric system.
Campbell, Mark L. J. Chem. Educ. 1991, 68, 1043.
Chemometrics
Some conundrums of chemical nomenclature  Quigley, Michael N.
When talking about chemistry, we use some awfully confusing terms that warrant scrutiny.
Quigley, Michael N. J. Chem. Educ. 1991, 68, 1009.
Chemometrics
The development of statistical concepts in a design-oriented laboratory course in scientific measuring  Goedhart, Martin J.; Verdonk, Adri H.
This article offers a contribution to the development of curriculum that includes design and evaluation of measurements.
Goedhart, Martin J.; Verdonk, Adri H. J. Chem. Educ. 1991, 68, 1005.
Chemometrics
Chemical equations are actually matrix equations  Alberty, Robert A.
Chemists tend to think that chemical equations are unique to chemistry and they are not used to thinking of chemical equations as the mathematical equations they in fact are. The objective of this paper is to illustrate the mathematical significance of chemical equations.
Alberty, Robert A. J. Chem. Educ. 1991, 68, 984.
Stoichiometry |
Chemometrics
KC? Discoverer: Exploring the properties of the chemical elements  Liebel, Michael
This software program allows users to explore a large number of properties of the elements. The program can find all elements associated with a certain property, graph numeric properties against other numeric properties, list elements, sort elements, and use the periodic table to select elements.
Liebel, Michael J. Chem. Educ. 1991, 68, 956.
Periodicity / Periodic Table |
Physical Properties |
Chemometrics |
Descriptive Chemistry
A carbonate project introducing students to the chemistry lab  Dudek, Emily
A description of a first semester general chemistry laboratory that helps acquaint students with a large variety of chemistry laboratory procedures.
Dudek, Emily J. Chem. Educ. 1991, 68, 948.
Chemometrics |
Gravimetric Analysis |
Titration / Volumetric Analysis |
Separation Science
The use of "marathon" problems as effective vehicles for the presentation of general chemistry lectures  Burness, James H.
A marathon problem is a long, comprehensive, and difficult problem that ties together many of the topics in a chapter and that is solved together by the instructor and students. Sample problems are included and advantages and disadvantages of this approach are discussed.
Burness, James H. J. Chem. Educ. 1991, 68, 919.
Chemometrics
An SI mnemonic  Quigley, M. N.
A mnemonic to help remember the physical quantities associated with the nine base SI units.
Quigley, M. N. J. Chem. Educ. 1991, 68, 815.
Chemometrics
Developmental instruction: Part II. Application of the Perry model to general chemistry  Finster, David C.
The Perry scheme offers a framework in which teachers can understand how students make meaning of their world, and specific examples on how instructors need to teach these students so that the students can advance as learners.
Finster, David C. J. Chem. Educ. 1991, 68, 752.
Learning Theories |
Atomic Properties / Structure |
Chemometrics |
Descriptive Chemistry
Some provocative opinions on the terminology of chemical kinetics  Reeve, John C.
Textbooks perpetuate a misunderstanding to students that reaction rates are inherent to the reaction, rather than being the product of experiments.
Reeve, John C. J. Chem. Educ. 1991, 68, 728.
Kinetics |
Rate Law
A study of some 2-chloro-2-methylpropane kinetics using a computer interface  Allen, Anthony; Haughey, Adam J.; Hernandez, Yolanda; Ireton, Scot
Examining the effects of a few variables on the rate of a chemical reaction using specialized software.
Allen, Anthony; Haughey, Adam J.; Hernandez, Yolanda; Ireton, Scot J. Chem. Educ. 1991, 68, 609.
Kinetics |
Rate Law |
Acids / Bases |
Laboratory Computing / Interfacing
Grafit  Lisensky, George C.
A data manipulation tool and plotting program useful at all levels of chemistry.
Lisensky, George C. J. Chem. Educ. 1991, 68, 587.
Laboratory Computing / Interfacing |
Chemometrics
A demonstration illustrating the factors determining rates of chemical reactions   Holmes, L. H., Jr.
This demonstration qualitatively illustrates factors determining reaction rates for first-year chemistry students.
Holmes, L. H., Jr. J. Chem. Educ. 1991, 68, 501.
Rate Law |
Kinetics
Space-filling P-V-T models  Hilton, Don B.
Space-filling models help beginning students visualize the numerical aspects of the empirical gas laws.
Hilton, Don B. J. Chem. Educ. 1991, 68, 496.
Gases |
Noncovalent Interactions |
Kinetic-Molecular Theory |
Chemometrics
When figures signify nothing  Ahmad, Jamil
Significant figures in the "real world" set poor standards and confusing examples for chemistry students.
Ahmad, Jamil J. Chem. Educ. 1991, 68, 469.
Chemometrics
Solving quadratic equations to the correct number of significant figures  Thomas, Rudolf
Presenting an application of the successive approximations method for solving quadratic or higher order expressions.
Thomas, Rudolf J. Chem. Educ. 1991, 68, 409.
Equilibrium |
Chemometrics
Is 8C equal to 50F?  Thompson, H. Bradford
A play, commentary, modest proposal, and a "less modest" proposal regarding calculations and significant figures.
Thompson, H. Bradford J. Chem. Educ. 1991, 68, 400.
Chemometrics
The effect of context on the translation of sentences into algebraic equations  Niaz, Mansoor; Herron, J. Dudley; Phelps, Amy J.
Assessing students in a one-semester preparatory chemistry course to see how well students understand proportional relationships.
Niaz, Mansoor; Herron, J. Dudley; Phelps, Amy J. J. Chem. Educ. 1991, 68, 306.
Chemometrics
Chemical equilibrium: III. A few math tricks   Gordus, Adon A.
The third article in a series on chemical equilibrium that considers a few math "tricks" useful in equilibrium calculations and approximations.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 291.
Acids / Bases |
Equilibrium |
Chemometrics |
Titration / Volumetric Analysis
Chemical equilibrium: II. Deriving an exact equilibrium equation   Gordus, Adon A.
In this article appearing in a series on chemical equilibrium, authors consider how to derive a completely general equation for any chemical mixture.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 215.
Equilibrium |
Chemometrics
A simple first-order consecutive rate reaction: A different method for its solution   Hughes, Elvin, Jr.
Power series methods should be used whenever possible in chemistry courses.
Hughes, Elvin, Jr. J. Chem. Educ. 1991, 68, 180.
Chemometrics |
Equilibrium
A simple first-order consecutive rate reaction: A different method for its solution   Castillo S., Carlos; Micolta S., Germania
A different way to present an equilibrium equation that appeared previously in this Journal.
Castillo S., Carlos; Micolta S., Germania J. Chem. Educ. 1991, 68, 179.
Chemometrics |
Equilibrium
Finding largest common factors and simplest integer ratios   Macomber, Roger S.
General chemistry students can ease some of their math-phobia with an exam question that deals with a familiar topic prior to putting these same mathematical principles into the context of chemistry.
Macomber, Roger S. J. Chem. Educ. 1991, 68, 42.
Chemometrics
Thermodynamic irreversibility  Hollinger, Henry B.; Zenzen, Michael J.
Concepts of "reversible" and "irreversible" start out seeming simple enough, but students often become confused. This article tackles areas of confusion in hopes of providing clarity.
Hollinger, Henry B.; Zenzen, Michael J. J. Chem. Educ. 1991, 68, 31.
Kinetics |
Thermodynamics
SEQS 3.0 Student Version Simultaneous Equation Solver (Tucker, Edwin E.)  Dierenfeldt, K.E.
SEQS 3.0 is a program of considerable versatility for solving sets of nonlinear simultaneous equations.
Dierenfeldt, K.E. J. Chem. Educ. 1990, 67, A149.
Chemometrics
A classroom experiment using the Pythagorean theorem in a discussion of the scientific method  Sauls, Frederic, C.
Experiment to verify the Pythagorean theorem as a means of introducing the importance of accurate measurements, accuracy and error.
Sauls, Frederic, C. J. Chem. Educ. 1990, 67, 958.
Nonmajor Courses |
Chemometrics
Accuracy of measurements and the U.S. Census  Gorin, George
Some aspects of taking the Census can help students to understand the problem of measurement error and the use of significant figures.
Gorin, George J. Chem. Educ. 1990, 67, 936.
Chemometrics
Lessons learned from Lord Rayleigh on the importance of data analysis  Larsen, Russell D.
Analysis of the data collected by Lord Rayleigh in association with his discovery of argon presented as a model for scientific inquiry.
Larsen, Russell D. J. Chem. Educ. 1990, 67, 925.
Chemometrics |
Atmospheric Chemistry
ChemCalc: A scientific calculator  Allendoerfer, Robert D.
A scientific calculator program that can be used as a stand-alone or incorporated into other software written in BASIC.
Allendoerfer, Robert D. J. Chem. Educ. 1990, 67, 770.
Chemometrics
A straightforward derivation of stoichiometric mass relationships  Gorin, George
An alternative to the factor label method for solving stoichiometric mass relationship problems.
Gorin, George J. Chem. Educ. 1990, 67, 762.
Stoichiometry |
Chemometrics
Ants and chemical kinetics  Myers, R. Thomas
Data regarding the speed of ants at various temperatures are amenable to standards treatment on chemical kinetics.
Myers, R. Thomas J. Chem. Educ. 1990, 67, 761.
Kinetics |
Rate Law
A simple second-order kinetics experiment  Weiss, Hilton M.; Touchette, Kim
The reaction studied in this experiment is the (reversible) dimerization of 2,5-dimethyl-3,4-diphenylcyclopentadienone; the monomer is colored while the dimer is not, so monitoring the reaction with a simple spectrophotometer provides the concentration of the monomer and therefore the rate of its disappearance.
Weiss, Hilton M.; Touchette, Kim J. Chem. Educ. 1990, 67, 707.
Kinetics |
Spectroscopy |
Aromatic Compounds
A bromate clock reaction: The formation of purple tris(diphosphato)manganate(III)  Rich, Ronald L.; Noyes, Richard M.
Bromate is used to oxidize nearly colorless Mn(II) to a deep purple complex of Mn(III).
Rich, Ronald L.; Noyes, Richard M. J. Chem. Educ. 1990, 67, 606.
Reactions |
Oxidation / Reduction |
Kinetics
A kinetic experiment for determination of traces of Cu2+  Lampard, M.
Adaptation of a spot technique used to identify trace amounts of cupric ion by its catalytic effect of the ferric ion / thiosulfate reaction.
Lampard, M. J. Chem. Educ. 1990, 67, 601.
Qualitative Analysis |
Catalysis |
Kinetics
Reduction of permanganate: A kinetics demonstration for general chemistry  Steffel, Margaret J.
Using the reduction of MnO4- to Mn2+ in aqueous solution to demonstrate the four factors that control reaction rates in solution: the natures of the reactants, concentrations of the reactants, temperature, and the presence of a catalyst.
Steffel, Margaret J. J. Chem. Educ. 1990, 67, 598.
Kinetics |
Rate Law |
Catalysis |
Oxidation / Reduction
A significant example: How many days in a century?  Lisensky, George
Calculating the number of days in a century can help clarify the subject of significant figures.
Lisensky, George J. Chem. Educ. 1990, 67, 562.
Nomenclature / Units / Symbols |
Chemometrics
Dynamic data storage in FORTRAN  Chung-Phillips, Alice
115. Bits and pieces, 44. The purpose of this article is to promote the use of dynamic storage allocation in FORTRAN to chemistry instructors and students in the present computing environment.
Chung-Phillips, Alice J. Chem. Educ. 1990, 67, 500.
Chemometrics
Wet labs, computers, and spreadsheets  Durham, Bill
The following is a description of some commonly encountered experiments that have been modified for computerized data acquisition.
Durham, Bill J. Chem. Educ. 1990, 67, 416.
Laboratory Computing / Interfacing |
Nuclear / Radiochemistry |
Titration / Volumetric Analysis |
Calorimetry / Thermochemistry |
Kinetics |
Electrochemistry
Solving quadratic equations  Brown, R. J. C.
A better technique than the quadratic equation for chemical equilibria is offered here.
Brown, R. J. C. J. Chem. Educ. 1990, 67, 409.
Chemometrics |
Equilibrium
An effective approach to teaching electrochemistry  Birss, Viola I.; Truax, D. Rodney
By interweaving concepts from thermodynamics and chemical kinetics with those of electrochemical measurement, the authors provide students with an enriched appreciation of the utility of ideas from kinetics and thermodynamics.
Birss, Viola I.; Truax, D. Rodney J. Chem. Educ. 1990, 67, 403.
Electrochemistry |
Kinetics |
Thermodynamics
Introduction to experiment design for chemists  Strange, Ronald S.
One purpose of this paper is to review basic concepts and terminology of experimental design, analysis of data, and optimization.
Strange, Ronald S. J. Chem. Educ. 1990, 67, 113.
Chemometrics
Exception to solving chem problems without the factor-label approach (the author replies)  Cardulla, Frank
There are other ways to teach problem solving, and they can produce competent, successful, and enthusiastic students.
Cardulla, Frank J. Chem. Educ. 1989, 66, 1066.
Chemometrics |
Nomenclature / Units / Symbols
Exception to solving chem problems without the factor-label approach  Gillette, Marcia L.
The classroom analogy Cardulla uses could be made much more meaningful if it were used to demonstrate the relation between what is obvious and what is not.
Gillette, Marcia L. J. Chem. Educ. 1989, 66, 1065.
Chemometrics |
Nomenclature / Units / Symbols
Polarized light and rates of chemical reactions  Weir, John J.
This experiment provides the opportunity to introduce the principles of reaction kinetics, polarized light, and the chemistry of optically active compounds; the rate of the acid-catalyzed hydrolysis of sucrose to glucose and fructose is determined.
Weir, John J. J. Chem. Educ. 1989, 66, 1035.
Rate Law |
Kinetics |
Chirality / Optical Activity |
Carboxylic Acids
Computer simulation of chemical equilibrium  Cullen, John F., Jr.
108. The "Great Chemical Bead Game" requires no instruments and presents the concepts of equilibrium and kinetics more clearly than an experiment. [October and November Computer Series both inadvertently called number 107. Numbering restored by skipping 109 and calling January 1990 number 110.]
Cullen, John F., Jr. J. Chem. Educ. 1989, 66, 1023.
Equilibrium |
Kinetics |
Rate Law
The iodine clock reaction: A surprising variant  Autuori, Marcos Alberto; Brolo, Alexandre Guimaraes; Mateus, Alfredo Luis M. L.
Substituting malonic acid for sulfuric acid.
Autuori, Marcos Alberto; Brolo, Alexandre Guimaraes; Mateus, Alfredo Luis M. L. J. Chem. Educ. 1989, 66, 852.
Reactions |
Kinetics |
Mechanisms of Reactions
The acid-base package: A collection of useful programs for proton-transfer systems  Hawkes, Stephen J.
Four programs that deal with the types of acid-base calculations normally encountered in introductory and analytical chemistry courses.
Hawkes, Stephen J. J. Chem. Educ. 1989, 66, 830.
Acids / Bases |
Chemometrics
Atlantic-Pacific sig figs  Stone, Helen M.
Examples of applications of significant figures in calculations.
Stone, Helen M. J. Chem. Educ. 1989, 66, 829.
Nomenclature / Units / Symbols |
Chemometrics
How to visualize Avogadro's number  van Lubeck, Henk
Three examples to help students visualize the size of a mole.
van Lubeck, Henk J. Chem. Educ. 1989, 66, 762.
Nomenclature / Units / Symbols |
Chemometrics
Kinetics of the fading of phenolphthalein in alkaline solution  Nicholson, Lois
The fading of phenolphthalein in alkaline solution can serve as the basis for an experiment illustrating first-order kinetics.
Nicholson, Lois J. Chem. Educ. 1989, 66, 725.
Acids / Bases |
Kinetics
Significant figure rules for general arithmetic functions  Graham, D. M.
Rules for determining what happens to the number of significant figures as various types of mathematical operations are performed upon certain quantities.
Graham, D. M. J. Chem. Educ. 1989, 66, 573.
Chemometrics
A stoichiometric journey  Molle, Brian
A story to help students overcome some of the difficulties they encounter in stoichiometry calculations.
Molle, Brian J. Chem. Educ. 1989, 66, 561.
Stoichiometry |
Chemometrics
Being a participant in the future  Parker, O. Jerry
Integrating computer technology into undergraduate chemistry courses.
Parker, O. Jerry J. Chem. Educ. 1989, 66, 500.
Administrative Issues |
Chemometrics
The relationship between M-demand, algorithms, and problem solving: A neo-Piagetian analysis  Niaz, Mansoor
One of the most important implements developed by the neo-Piagetian theory is task analysis, that is, the evaluation of the M-demand of a problem. M-demand can be defined as: maximum number of steps that the subject must mobilize simultaneously in in the course of executing a task.
Niaz, Mansoor J. Chem. Educ. 1989, 66, 422.
Learning Theories |
Chemometrics
Significant Figures and Error Propagation  West, Allen C.
Schwartz is wrong to say that 125 mL +/- 5% means a systematic error of +/-5%.
West, Allen C. J. Chem. Educ. 1989, 66, 272.
Chemometrics
Accurate equations of state in computational chemistry projects  Allbee, David; Jones, Edward
101. This article presents one method that allows students to become familiar with the use of modern equations of state and also enhances their understanding of how computers can be used in the study and application of chemistry. [Includes "Editor's note: Changes in the computer series", by Lagowski, J. J., p. 226]
Allbee, David; Jones, Edward J. Chem. Educ. 1989, 66, 226.
Applications of Chemistry |
Chemometrics
Visible spectrophotometric determination of the partition coefficient of methyl violet: A microscale extraction experiment  Sonnenberger, David C.; Ferroni, Edward L.
This experiment is designed to demonstrate the principles of separation by solvent extraction, partition coefficient, and the construction and use of a Beer-Lambert standard curve.
Sonnenberger, David C.; Ferroni, Edward L. J. Chem. Educ. 1989, 66, 91.
Separation Science |
Chemometrics
Graphical analysis III (Vernier, David L.)  Carpenter, Jeanette; Bowers, Caroline H.
Two reviews of a complete graphing tool suitable for high school and college applications with a wide range of operations varying in complexity.
Carpenter, Jeanette; Bowers, Caroline H. J. Chem. Educ. 1988, 65, A269.
Chemometrics
Chemistry according to ROF (Fee, Richard)  Radcliffe, George; Mackenzie, Norma N.
Two reviews on a software package that consists of 68 programs on 17 disks plus an administrative disk geared toward acquainting students with fundamental chemistry content. For instance, acids and bases, significant figures, electron configuration, chemical structures, bonding, phases, and more.
Radcliffe, George; Mackenzie, Norma N. J. Chem. Educ. 1988, 65, A239.
Chemometrics |
Atomic Properties / Structure |
Equilibrium |
Periodicity / Periodic Table |
Periodicity / Periodic Table |
Stoichiometry |
Physical Properties |
Acids / Bases |
Covalent Bonding
Analysis of kinetic data with a spreadsheet program  Henderson, John
An article about spreadsheet templates that accept concentration versus time data for several runs of an experiment, determination of least-squares lines through data points for each run, and will allow the user to exclude points from the least-squares calculation.
Henderson, John J. Chem. Educ. 1988, 65, A150.
Chemometrics |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy |
Rate Law |
Kinetics |
Enzymes
Chemical principles for the introductory laboratory, CHM 384 (Johnson, James F.)  Wegner, Carol
A comprehensive review of the title program which overviews basic techniques and concepts presented in introductory laboratory courses. Topics include: titration, equilibrium, Ksp, solubility, Beer's law, coordination complexes and first-order rates of reaction.
Wegner, Carol J. Chem. Educ. 1988, 65, A47.
Acids / Bases |
Titration / Volumetric Analysis |
UV-Vis Spectroscopy |
Equilibrium |
Solutions / Solvents |
Coordination Compounds |
Kinetics
Oscillating reactions   Kolb, Doris.
A demonstration done on the overhead that oscillates.
Kolb, Doris. J. Chem. Educ. 1988, 65, 1004.
Reactions |
Equilibrium |
Kinetics
Teaching students to use algorithms for solving generic and harder problems in general chemistry  Kean, Elizabeth; Middlecamp, Catherine Hurt; Scott, D. L.
This paper describes teaching strategies that help students improve their problem-solving skills.
Kean, Elizabeth; Middlecamp, Catherine Hurt; Scott, D. L. J. Chem. Educ. 1988, 65, 987.
Stoichiometry |
Chemometrics
The study of a simple redox reaction as an experimental approach to chemical kinetics  Elias, Horst; Zipp, Arden P.
The authors present a kinetics experiment based on the oxidation of iodide ions that, like the iodine clock, is quick and easy to perform but has the advantage of being followed directly rather than indirectly.
Elias, Horst; Zipp, Arden P. J. Chem. Educ. 1988, 65, 737.
Kinetics |
Reactions |
Rate Law
Some analogies for teaching rates/equilibrium   Olney, David J.
This article presents several analogies for teaching rates and equilibrium developed by the author over his many years in the chemistry classroom that seem to be effective.
Olney, David J. J. Chem. Educ. 1988, 65, 696.
Kinetics |
Equilibrium
Let's separate theories from calculations   Freilich, Mark B.
This author writes in a 'provocative opinion' article challenging the readers to think about heavily emphasizing 'thought problems' in chemistry and allowing students to master those before throwing calculations into the mix.
Freilich, Mark B. J. Chem. Educ. 1988, 65, 442.
Chemometrics
An alternative to using the PV = nRT equation   Desmarais, George
This author shares his application of the factor-label method to solving gas problems which involves using the ideal gas constant as the starting point in the relationship.
Desmarais, George J. Chem. Educ. 1988, 65, 392.
Gases |
Stoichiometry |
Chemometrics
Avogadro's number: A perverse view  Lehman, Thomas A.
A way to think of Avogadro's number: take anything and double it 79 times.
Lehman, Thomas A. J. Chem. Educ. 1988, 65, 282.
Chemometrics |
Stoichiometry
A "stationery" kinetics experiment   Hall, L.; Goherdhansingh, A.
The simple redox reaction that occurs between potassium permanganate and oxalic acid can be used to prepare an interesting disappearing ink that is the basis for a kinetics experiment for an introductory chemistry class.
Hall, L.; Goherdhansingh, A. J. Chem. Educ. 1988, 65, 142.
Kinetics
Remember E = hv is correct only half of the time  Leo, Howard, R.
Reminder that the title equation (Planck) is not algebraically correct.
Leo, Howard, R. J. Chem. Educ. 1988, 65, 11.
Chemometrics |
Photochemistry
Computer-Assisted Blackboard (Soltzberg, L. J.)  Kruger, J. D.
8-disk set of programs (Apple II) designed to help a lecturer illustrate gas laws, the Rutherford atomic model, quantization in a Bohr atom, wave-functions and orbitals, heat and changes in state, kinetics and simple reaction mechanisms, equilibrium, acid-base reactions, and titrations.
Kruger, J. D. J. Chem. Educ. 1987, 64, A135.
Acids / Bases |
Gases |
Atomic Properties / Structure |
Phases / Phase Transitions / Diagrams |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Titration / Volumetric Analysis
Good numerical technique in chemistry: The quadratic equation  Thompson, H. Bradford
Texts commonly avoid examples with bad round-off problems or handle them by approximation; none of this is necessary, for simple techniques are available to handle quadratic equations easily and precisely.
Thompson, H. Bradford J. Chem. Educ. 1987, 64, 1009.
Chemometrics
The collision theory and an American tradition  Krug, Lee A.
Comparing baseball to the three requirements of the collision theory of molecules.
Krug, Lee A. J. Chem. Educ. 1987, 64, 1000.
Kinetic-Molecular Theory |
Kinetics
Reaction stoichiometry and suitable "coordinate systems"  Tykodi, R. J.
Methods for dealing with problems involving reactions stoichiometry: unitize and scale up, factor-label procedure, de Donder ratios, and titration relations.
Tykodi, R. J. J. Chem. Educ. 1987, 64, 958.
Stoichiometry |
Titration / Volumetric Analysis |
Chemometrics
Hard ways and easy ways  Schwartz, Lowell M.
Two examples of common general chemistry calculations and different approaches ("hard" and "easy") to solving them.
Schwartz, Lowell M. J. Chem. Educ. 1987, 64, 698.
Stoichiometry |
Chemometrics
An example of a constant rate reaction  Tawarab, Khalid M.
A simple experiment whose rate of reaction (a burning candle) proceeds at constant conditions.
Tawarab, Khalid M. J. Chem. Educ. 1987, 64, 534.
Rate Law |
Kinetics
Another auto analogy: Rate-determining steps  Ball, David W.
An analogy to describe the physical meaning of a rate-determining step.
Ball, David W. J. Chem. Educ. 1987, 64, 486.
Kinetics |
Mechanisms of Reactions
Enthalpy and Hot Wheels: An analogy  Bonneau, Marcia C.
Demonstrating the relationship between activation energy and the heat of a reaction using a "Hot Wheels" track and car to simulate a potential energy diagram.
Bonneau, Marcia C. J. Chem. Educ. 1987, 64, 486.
Kinetics |
Calorimetry / Thermochemistry |
Thermodynamics
Solving limiting reagent problems (the author replies)  Kalantar, A. H.
Thanks for clarification and suggestion.
Kalantar, A. H. J. Chem. Educ. 1987, 64, 472.
Stoichiometry |
Chemometrics
Solving limiting reagent problems  Skovlin, Dean O.
Uncertainty in the meaning of the term X.
Skovlin, Dean O. J. Chem. Educ. 1987, 64, 472.
Stoichiometry |
Chemometrics
The cola clock: A new flavor to an old classic  Russell, Richard A.; Switzer, Robert W.
The classic iodine clock reaction with Vitex replacing starch as the indicator.
Russell, Richard A.; Switzer, Robert W. J. Chem. Educ. 1987, 64, 445.
Kinetics |
Reactions
Statistical evaluation of class data for two buret readings  Gordus, Adon A.
Data that serve to illustrate both random and systematic errors in measurements characteristic of titrations.
Gordus, Adon A. J. Chem. Educ. 1987, 64, 376.
Chemometrics |
Titration / Volumetric Analysis
Coupled oscillations  Onwood, D. P.
Demonstrating coupled oscillations using pendulums.
Onwood, D. P. J. Chem. Educ. 1987, 64, 351.
Kinetics
Mole fraction revisited  Mancott, A.
This problem requires the use of algebraic reasoning to derive and solve a fraction linear equation based on the concept of moles and conservation of moles.
Mancott, A. J. Chem. Educ. 1987, 64, 320.
Stoichiometry |
Chemometrics
Kinetics and mechanism of the iodine azide reaction: A videotaped experiment  Haight, Gilbert P.; Jones, Loretta L.
A clock reaction suitable for videotaping and presenting to a large lecture class of general chemistry for analysis.
Haight, Gilbert P.; Jones, Loretta L. J. Chem. Educ. 1987, 64, 271.
Kinetics |
Mechanisms of Reactions |
Rate Law
Slopes of straight lines when neither axis is error free  Kalantar, A. H.
The iterative effective variance method is not reliable and its use is pedagogically unwise.
Kalantar, A. H. J. Chem. Educ. 1987, 64, 28.
Chemometrics
The length of a pestle: A class exercise in measurement and statistical analysis  O'Reilly, James E.
Too many students get through chemistry without acquiring a basic understanding and appreciation of the concepts of measurement science. The purpose of this report is to outline an extremely simple class exercise as a concrete paradigm of the entire process of making chemical measurements and treating data.
O'Reilly, James E. J. Chem. Educ. 1986, 63, 894.
Chemometrics
Calculation of Madelung constants in the first year chemistry course  Elert, Mark; Koubek, Edward
76. Bits and pieces, 31. A computer program aids in understanding the nature of the Madelung constants.
Elert, Mark; Koubek, Edward J. Chem. Educ. 1986, 63, 840.
Crystals / Crystallography |
Chemometrics
Teaching significant figures using a learning cycle  Guymon, E. Park; James, Helen J.; Saeger, Spencer L.
Can we teach significant figures in a way that will be better retained by our students? These authors propose a solution.
Guymon, E. Park; James, Helen J.; Saeger, Spencer L. J. Chem. Educ. 1986, 63, 786.
Learning Theories |
Chemometrics
A flowchart for dimensional analysis  Graham, D. M.
A flowchart to help students organize their thoughts when solving conversion problems.
Graham, D. M. J. Chem. Educ. 1986, 63, 527.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
Where did that number come from?   DeLorenzo, Ronald
With more careful labeling and handling of numbers, instructors can reduce the confusion students sometimes feel when watching problems being solved by the instructor on the board.
DeLorenzo, Ronald J. Chem. Educ. 1986, 63, 514.
Chemometrics |
Nomenclature / Units / Symbols
Factor-label: Another view   Maloy, Joseph T.
It is of interest to our students' academic development that we teach them the mathematical theory behind factor label approaches to problems solving.
Maloy, Joseph T. J. Chem. Educ. 1986, 63, 186.
Chemometrics
Unit basis a neglected problem-solving technique   Beichl, George J.
A technique that will prevent students from using ineffective problem-solving techniques such as dimensional analysis.
Beichl, George J. J. Chem. Educ. 1986, 63, 146.
Chemometrics |
Stoichiometry
On writing equations  Campbell, J.A.
The author presents a very direct approach to writing complicated equations without using a matrix approach.
Campbell, J.A. J. Chem. Educ. 1986, 63, 63.
Stoichiometry |
Chemometrics
An interactive, screen-oriented, general linear regression program  Joshi, Bhairav D.
65. Bits and pieces, 26. Description of GSLINE, a program runs linear regressions.
Joshi, Bhairav D. J. Chem. Educ. 1985, 62, 1027.
Chemometrics
Mathematics in the chemistry classroom. Part 2. Elementary entities play their part  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
One of the problems that learners have to overcome when doing stoichiometry calculations is to learn how statements about elementary entities given by formulas and equations are related to statements about portions of substances as measured in the macroscopic world.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 1021.
Chemometrics |
Stoichiometry
Doing the dishes: An analogy for use in teaching reaction kinetics  Last, Arthur M.
An analogy between doing dishes and a two-step reaction.
Last, Arthur M. J. Chem. Educ. 1985, 62, 1015.
Kinetics |
Reactions
Pandemonium pesticide: A simple demonstration illustrating some fundamental chemical concepts  Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D.
Demonstration that uses large, visible particles to simulate calculations of atomic / molecular mass, percentage composition, and molecular formula.
Kauffman, George B.; Chooljian, Steven H.; Ebner, Ronald D. J. Chem. Educ. 1985, 62, 870.
Atomic Properties / Structure |
Molecular Properties / Structure |
Stoichiometry |
Chemometrics
Mathematics in the chemistry classroom. Part 1. The special nature of quantity equations  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
Differences between operation on quantities and operation on numbers and how chemical quantities should be described mathematically.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 839.
Chemometrics |
Stoichiometry |
Nomenclature / Units / Symbols
Windowsill kinetics: A spectrophotometric study of the photochromism of mercury dithizonate  Petersen, Richard L.; Harris, Gaylon L.
Mercury dithizonate undergoes a color change from orange to an intense royal blue upon irradiation with visible light.
Petersen, Richard L.; Harris, Gaylon L. J. Chem. Educ. 1985, 62, 802.
Photochemistry |
Spectroscopy |
Kinetics |
Coordination Compounds |
Raman Spectroscopy
Determination of molecular dimensions using monolayers: Another approach  McNaught, Ian J.; Peckham, Gavin D.
A preliminary activity to help students understand the concept and calculations of the determination of molecular dimensions using monolayers.
McNaught, Ian J.; Peckham, Gavin D. J. Chem. Educ. 1985, 62, 795.
Molecular Properties / Structure |
Chemometrics
Propagation of significant figures  Schwartz, Lowell M.
The rules of thumb for propagating significant figures through arithmetic calculations frequently yield misleading results.
Schwartz, Lowell M. J. Chem. Educ. 1985, 62, 693.
Chemometrics
A different look at the solubility-product principle  Hugus, Z Z., Jr.; Hentz, F. C., Jr.
The progressive addition of Cl- to Ag+ yields an ion-product equal to Ksp at two different points.
Hugus, Z Z., Jr.; Hentz, F. C., Jr. J. Chem. Educ. 1985, 62, 645.
Precipitation / Solubility |
Aqueous Solution Chemistry |
Solutions / Solvents |
Chemometrics
Working backwards is a forward step in the solution of problems by dimensional analysis  Drake, Robert F.
Solving chemistry calculations by determining the units of the desired answer and then working backwards using dimensional analysis.
Drake, Robert F. J. Chem. Educ. 1985, 62, 414.
Chemometrics |
Nomenclature / Units / Symbols
"Chemistry" problems without chemical terminology  Ciereszko, Leon S.
Three questions analogous to percentage composition and Charles' law calculations.
Ciereszko, Leon S. J. Chem. Educ. 1985, 62, 402.
Chemometrics
A comment on "The order of CH3CHO decomposition"  Liu, Michael T. H.
The order of the decomposition of acetaldehyde is 3/2 or 1.5.
Liu, Michael T. H. J. Chem. Educ. 1985, 62, 399.
Aldehydes / Ketones |
Rate Law |
Kinetics
Derivation of the ideal gas law  Levine, S.
Derivation of the ideal gas law from a thermodynamic influence.
Levine, S. J. Chem. Educ. 1985, 62, 399.
Gases |
Thermodynamics |
Chemometrics
Using a conversion matrix to simplify stoichiometric calculations from balanced equations  Berger, Selman A.
Two examples of using a conversion matrix to simplify stoichiometric calculations from balanced equations.
Berger, Selman A. J. Chem. Educ. 1985, 62, 396.
Chemometrics |
Stoichiometry
Problem-solving skills in chemistry made easier  Fast, Kenneth V.
Step-by-step format for performing common calculations in chemistry.
Fast, Kenneth V. J. Chem. Educ. 1985, 62, 396.
Stoichiometry |
Chemometrics
A convenient device to demonstrate statistically based sampling error in a particulate mixture  Reid, R. S.
Apparatus to demonstrate statistically based sampling error using a mixture of colored beads.
Reid, R. S. J. Chem. Educ. 1985, 62, 252.
Chemometrics
Why isn't my rain as acidic as yours?  Zajicek, O. T.
Calculating of pH values of acid rain and comparisons to uncontaminated samples.
Zajicek, O. T. J. Chem. Educ. 1985, 62, 158.
Acids / Bases |
Atmospheric Chemistry |
pH |
Chemometrics
Change in concentration with time  Umland, Jean B.
Shows how the rate of a reaction is fast at first and then gradually decreases to zero when one reactant has been used up.
Umland, Jean B. J. Chem. Educ. 1985, 62, 153.
Solutions / Solvents |
Kinetics |
Rate Law
Limiting reagent problems made simple for students  Kalantar, A. H.
Method for determining the limiting reagent among three or more reactants.
Kalantar, A. H. J. Chem. Educ. 1985, 62, 106.
Stoichiometry |
Chemometrics
Five Avogadro's number problems  Todd, David
Five problems involving Avogadro's number.
Todd, David J. Chem. Educ. 1985, 62, 76.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
A LAP on moles: Teaching an important concept  Ihde, John
The objective of the Learning Activity Packet on moles include understanding the basic concept of the mole as a chemical unit, knowing the relationships between the mole and the atomic weights in the periodic table, and being able to solve basic conversion problems involving grams, moles, atoms, and molecules. [Debut]
Ihde, John J. Chem. Educ. 1985, 62, 58.
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics |
Atomic Properties / Structure |
Molecular Properties / Structure |
Periodicity / Periodic Table
Graphical Analysis, Review II (Dice, David R.)  Sievers, Dennis
A computerized program that generates graphs of empirical data.
Sievers, Dennis J. Chem. Educ. 1984, 61, A324.
Chemometrics
Graphical Analysis, Review I (Dice, David R.)  Palmer, Glenn E.
A computerized program that generates graphs of empirical data.
Palmer, Glenn E. J. Chem. Educ. 1984, 61, A323.
Chemometrics
The Elements of Style in Chemistry, A Computer-assisted Instruction Supported Text (Beatty, James W.; Beatty, James J.)  Crawford, Victor A.
Intended to support students who have trouble solving important types of problems in chemistry.
Crawford, Victor A. J. Chem. Educ. 1984, 61, A27.
Enrichment / Review Materials |
Chemometrics
Kinetics and mechanism-a games approach  Harsch, Gunther
Using statistical games to simulate and illustrate a variety of chemical kinetics.
Harsch, Gunther J. Chem. Educ. 1984, 61, 1039.
Kinetics |
Mechanisms of Reactions |
Catalysis |
Rate Law
Iodine clock reaction mechanisms  Lambert, Jack L.; Fina, Gary T.
Outlines the mechanism for the simple iodine clock reaction and the "Old Nassau" modification.
Lambert, Jack L.; Fina, Gary T. J. Chem. Educ. 1984, 61, 1037.
Mechanisms of Reactions |
Reactions |
Kinetics |
Oxidation / Reduction
The emergence of stochastic theories: What are they and why are they special?  Freeman, Gordon R.
Examines the word stochastic and its opposite, deterministic, and points out why stochastic models are receiving new emphasis of late.
Freeman, Gordon R. J. Chem. Educ. 1984, 61, 944.
Kinetics |
Nomenclature / Units / Symbols
A small electronic device for studying chemical kinetics  Prez-Rodriguez, A. L.; Calvo-Aguilar, J. L.
Studying rates of reactions with a small electronic device and an oscilloscope overcomes the difficulty students encounter in solving the differential equations describing chemical equilibrium.
Prez-Rodriguez, A. L.; Calvo-Aguilar, J. L. J. Chem. Educ. 1984, 61, 808.
Laboratory Equipment / Apparatus |
Kinetics |
Rate Law
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
Uncertainty analysis by the "worst case" method  Gordon, Roy; Pickering, Miles; Bisson, Denise
A new method of uncertainty propagation that is in many ways superior to the traditional manipulation of absolute and relative uncertainty.
Gordon, Roy; Pickering, Miles; Bisson, Denise J. Chem. Educ. 1984, 61, 780.
Chemometrics
A demonstration of the effect of temperature on reaction rate (the authors reply)  Boring, Wayne C.; McMillan, Ernest
Addresses problems identified with their demonstration / experiment.
Boring, Wayne C.; McMillan, Ernest J. Chem. Educ. 1984, 61, 744.
Kinetics |
Rate Law
A demonstration of the effect of temperature on reaction rate  Gupta, Y. K.; Mishra, S. K.
Problems with the experiment cited.
Gupta, Y. K.; Mishra, S. K. J. Chem. Educ. 1984, 61, 744.
Kinetics |
Rate Law
The factor-label method: Is it all that great?  Navidi, Marjorie H.; Baker, A. David
The development of reasoning skills in chemistry is better achieved by postponing the introduction of the factor-label method.
Navidi, Marjorie H.; Baker, A. David J. Chem. Educ. 1984, 61, 522.
Chemometrics
Cooking with chemistry  Grosser, Arthur E.
Two demonstrations involving cooking eggs and suggestions for many more examples of cooking that illustrate important principles of chemistry. From the "State-of-the-Art Symposium for Chemical Educators: Chemistry of the Food Cycle".
Grosser, Arthur E. J. Chem. Educ. 1984, 61, 362.
Food Science |
Gases |
Acids / Bases |
Equilibrium |
Kinetics
The density of solids  Burgess, Dale
Using density measurements as an opportunity to discuss experimental procedures, error, and significant figures.
Burgess, Dale J. Chem. Educ. 1984, 61, 242.
Chemometrics |
Physical Properties
Teaching factor-label method without sleight of hand  Garrett, James M.
As an aid in teaching the factor-label method, the author has developed a rather simple card game involving the matching of symbols and colors.
Garrett, James M. J. Chem. Educ. 1983, 60, 962.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols
A bloody nose, the hairdresser's salon, flies in an elevator, and dancing couples: The use of analogies in teaching introductory chemistry  Last, Arthur M.
The use of analogies can play an important role in assisting students in understanding some of the more difficult and/or abstract concepts in introductory chemistry. In addition, analogies can provide an amusing interlude during a lecture and can sometimes help a lecturer to interact with his students. The four analogies presented in this article represent some of the analogies students have found helpful and amusing in recent years.
Last, Arthur M. J. Chem. Educ. 1983, 60, 748.
Molecular Properties / Structure |
Kinetics |
Stoichiometry |
Thermodynamics
Computer simulation of elementary chemical kinetics   Nase, Martha L.; Seidman, Kurt
44. Bits and pieces, 16. The authors have developed several computer programs that simulate chemical kinetics for elementary first and second order processes. These programs can be used to generate kinetic data that can then be analyzed by the student in a variety of ways.
Nase, Martha L.; Seidman, Kurt J. Chem. Educ. 1983, 60, 734.
Kinetics |
Rate Law
Reflections upon mathematics in the introductory chemistry course  Goodstein, Madeline P.
It is the purpose of this paper to call attention to the lack of mathematical competence by chemistry students and to invite consideration of one conceptual scheme which may be used to unify the mathematical approach.
Goodstein, Madeline P. J. Chem. Educ. 1983, 60, 665.
Chemometrics |
Gases
On the chemically impossible "other" roots in equilibrium problems  Ludwig, Oliver G.
Students often have a hard time knowing when to disregard equilibrium roots that are too large or are negative. The author suggests a convincing proof that helps students understand how the relationship between the conceptual and mathematical.
Ludwig, Oliver G. J. Chem. Educ. 1983, 60, 547.
Equilibrium |
Chemometrics
Empirical pKb and pKa for nonmetal hydrides from periodic table position  Bayless, Philip L.
The equation in this article was developed by the author. It estimates the aqueous pKa for certain acids to an average deviation of 0.1pK unit for those with experimentally determined values and agrees with experimentally determined values, and as well as with estimates for those too weak or too strong to be measured.
Bayless, Philip L. J. Chem. Educ. 1983, 60, 546.
Acids / Bases |
pH |
Chemometrics
Influence of temperature and catalyst on the decomposition of potassium chlorate in a simple DTA apparatus  Wiederholt, Erwin
The authors describe the use of a simple DTA-apparatus in demonstrating the catalytic effects of MnO2 and Al2O3 on the decomposition temperature of KClO3.
Wiederholt, Erwin J. Chem. Educ. 1983, 60, 431.
Kinetics |
Instrumental Methods |
Catalysis |
Reactions |
Rate Law
A safe and simple demonstration of the effect of temperature on reaction rate  Boring, Wayne C.; McMillan, Ernest T.
The demonstration described here utilizes a safe and familiar reaction to illustrate the concept of reaction rate to students.
Boring, Wayne C.; McMillan, Ernest T. J. Chem. Educ. 1983, 60, 414.
Kinetics |
Reactions
Le Châtelier's principle: the effect of temperature on the solubility of solids in liquids  Brice, L. K.
The purpose of this article is to provide a rigorous but straightforward thermodynamic treatment of the temperature dependence of solubility of solids in liquids that is suitable for presentation at the undergraduate level. The present discussion may suggest how to approach the qualitative aspects of the subject for freshman.
Brice, L. K. J. Chem. Educ. 1983, 60, 387.
Thermodynamics |
Liquids |
Solids |
Chemometrics |
Equilibrium
Getting a "bang" out of chemical kinetics  Hague, George R., Jr.
The kinetics demonstration described in this note has attracted as many as 15,000people to come and watch.
Hague, George R., Jr. J. Chem. Educ. 1983, 60, 355.
Kinetics
The use of the Warnier-Orr program design method in the preparation of general chemistry tutorials   Hach, Edwin E., Jr.
39. In this article, a modified Warnier-Orr approach is illustrated for a computer tutorial involving ideal gas calculations.
Hach, Edwin E., Jr. J. Chem. Educ. 1983, 60, 348.
Gases |
Chemometrics
The spilled can of paint   Perkins, Robert
The writer describes a problem for students to work out in order to better understand units of conversion.
Perkins, Robert J. Chem. Educ. 1983, 60, 343.
Nomenclature / Units / Symbols |
Chemometrics
The liquid silver parade   Perkins, Robert
The activity described in this note is useful in illustrating how small atoms are to students.
Perkins, Robert J. Chem. Educ. 1983, 60, 343.
Stoichiometry |
Chemometrics
Titration calculations- a problem-solving approach  Waddling, Robin E. L.
This author shares a strategy for helping students who might be struggling with understanding how to calculate and understand titration data.
Waddling, Robin E. L. J. Chem. Educ. 1983, 60, 230.
Acids / Bases |
Titration / Volumetric Analysis |
Chemometrics
Mass spectral analysis of halogen compounds   Holdsworth, David K.
37. Bits and pieces, 14. A pocket calculator can be programmed to decide and display the halogen combination in a molecular-ion cluster by examination of the (M+2)/M or (X+2)/X percentage values.
Holdsworth, David K. J. Chem. Educ. 1983, 60, 103.
Chemometrics |
Mass Spectrometry
A pocket calculator program for the solution of pH problems via the method of successive approximations   Guida, Wayne C.
37. Bits and pieces, 14. A description of a pocket calculator program for the solution of pH problems via the method of successive approximations .
Guida, Wayne C. J. Chem. Educ. 1983, 60, 101.
pH |
Acids / Bases |
Chemometrics
Data generation in the classroom  Blanco, Luis H.
A pendulum device for generating data for statistical analysis.
Blanco, Luis H. J. Chem. Educ. 1982, 59, 1028.
Chemometrics |
Laboratory Equipment / Apparatus
The estimation of Avogadro's number using cetyl alcohol as the monolayer  Feinstein, H. I.; Sisson, Robert F., III
Results and calculations using cetyl alcohol as the monolayer in estimating Avogadro's number.
Feinstein, H. I.; Sisson, Robert F., III J. Chem. Educ. 1982, 59, 751.
Stoichiometry |
Molecular Properties / Structure |
Chemometrics
Chemical equation balancing: A general method which is quick, simple, and has unexpected applications  Blakley, G. R.
Using matrices to solve mathematical equations and balance chemical equations. From "The Goals of General Chemistry - A Symposium."
Blakley, G. R. J. Chem. Educ. 1982, 59, 728.
Stoichiometry |
Chemometrics
Mathematics in data analysis: An introduction  Wang, Taitzer
The meaning of simple mathematical equations are described in a perspective that, for some reasons, many beginning students do not seem to be able to obtain from reading textbooks on the subject.
Wang, Taitzer J. Chem. Educ. 1982, 59, 592.
Chemometrics
Recurrent difficulties: Solving quantitative problems  Kramers-Pals, H.; Lambrechts, J.; Wolff, P. J.
Investigating the process students use to solve quantitative problems using a think aloud strategy.
Kramers-Pals, H.; Lambrechts, J.; Wolff, P. J. J. Chem. Educ. 1982, 59, 509.
Chemometrics
The kinetics of photographic development: A general chemistry experiment  Byrd, J. E.; Perona, M. J.
An experiment that uses black and white photographic equipment to illustrate the determination of reaction rate, kinetic order of reactant, and activation energy.
Byrd, J. E.; Perona, M. J. J. Chem. Educ. 1982, 59, 335.
Kinetics |
Applications of Chemistry |
Photochemistry |
Rate Law
Remedial mathematics for the introductory chemistry course: The "CHEM. 99" concept  Bohning, James J.
An approach that is aimed specifically at mathematical deficiencies and based on the premise that the deductive reasoning process that accompanies basic mathematical technique is crucial for a meaningful comprehension of general chemistry principles.
Bohning, James J. J. Chem. Educ. 1982, 59, 207.
Chemometrics
Buffers  Gold, Marvin
A demonstration based on buffer calculations.
Gold, Marvin J. Chem. Educ. 1982, 59, 155.
Acids / Bases |
Chemometrics
Calculation of statistical thermodynamic properties  Vicharelli, P. A.; Collins, C. B.
25. Bits and pieces, 9. A computer program for the calculation of specific heat, entropy, enthalpy, and Gibbs free energy of polyatomic molecules.
Vicharelli, P. A.; Collins, C. B. J. Chem. Educ. 1982, 59, 131.
Calorimetry / Thermochemistry |
Thermodynamics |
Chemometrics
CAI Programs in BASIC and an associated MATH subroutine  Anderson, Robert Hunt
25. Bits and pieces, 9. Four BASIC programs involving basic calculations and mathematical problems in chemistry.
Anderson, Robert Hunt J. Chem. Educ. 1982, 59, 129.
Chemometrics |
Enrichment / Review Materials
Basic mathematics for beginning chemistry (Goldish, Dorthoy M.)  Ellison, Herbert R.

Ellison, Herbert R. J. Chem. Educ. 1981, 58, A65.
Chemometrics |
Mathematics / Symbolic Mathematics |
Enrichment / Review Materials
Think   Wheeler, S. J., James D.
Students have an easy enough time crunching numbers, but it is alarming how little they understand the concepts behind the numbers. Students should not be making remarks such as, "If they keep changing how they write the problems, how am I supposed to know how to solve them?"
Wheeler, S. J., James D. J. Chem. Educ. 1981, 58, 1004.
Learning Theories |
Chemometrics
Small things and large numbers   Rosenberg, Milton H.
Some challenging solubility problems are featured in this note.
Rosenberg, Milton H. J. Chem. Educ. 1981, 58, 962.
Solutions / Solvents |
Equilibrium |
Chemometrics
Superlative problems  Akers, Hugh A.; Akers, Gwyn E.
The data in the Guinness Book of World Records holds great potential for fun, interesting chemistry exercises.
Akers, Hugh A.; Akers, Gwyn E. J. Chem. Educ. 1981, 58, 795.
Chemometrics
Let's get the heck out of here!  White, Alvan D.
A football stadium is used to explain rate-determining steps.
White, Alvan D. J. Chem. Educ. 1981, 58, 645.
Rate Law |
Kinetics
Balancing complex redox equations by inspection   Kolb, Doris
A step-by-step walk through of the inspection process for balancing equations.
Kolb, Doris J. Chem. Educ. 1981, 58, 642.
Stoichiometry |
Chemometrics
A statistical note on the time lag method for second-order kinetic rate constants  Schwartz, Lowell M.
A clever method for finding second-order kinetic rate constants by using a time lag method that avoids direct measurement of the end point reading P(infinity) can easily be programmed.
Schwartz, Lowell M. J. Chem. Educ. 1981, 58, 588.
Chemometrics |
Kinetics |
Rate Law
A mathematics readiness test for prospective chemistry students  Weisman, Rence L.
A mathematics readiness test is prepared to determine whether students have the minimum competency necessary to succeed in chemistry.
Weisman, Rence L. J. Chem. Educ. 1981, 58, 564.
Chemometrics |
Mathematics / Symbolic Mathematics
How big is Avogadro's number (or how small are atoms, molecules and ions)  Fulkrod, John E.
Calculating the volume occupied by Avogadro's number of drops of water helps students understand the magnitude of this quantity while giving them practice at using scientific notation and the metric system.
Fulkrod, John E. J. Chem. Educ. 1981, 58, 508.
Nomenclature / Units / Symbols |
Chemometrics |
Stoichiometry
"Scientific method" through laboratory experience  Hanson, Allen L.
The laboratory presented here will give the students some practice in scientific laboratory habits and general scientific habits of mind.
Hanson, Allen L. J. Chem. Educ. 1981, 58, 434.
Kinetics
Some kinetic aspects relevant to contemporary analytical chemistry  Mottola, Horacio A.
Fundamental concepts of kinetics tend to get diluted or ignored in contemporary treatments of the subject.
Mottola, Horacio A. J. Chem. Educ. 1981, 58, 399.
Kinetics
Pressure and the exploding beverage container   Perkins, Robert R.
The question in this article is an extension of exploding pop bottles to illustrate the balancing of a chemical equation, enthalpy, stoichiometry, and vapor pressure calculations, and the use of the Ideal Gas Equation. The question is aimed at the first-year level student.
Perkins, Robert R. J. Chem. Educ. 1981, 58, 363.
Stoichiometry |
Gases |
Thermodynamics |
Chemometrics
Temperature effect on reaction rates   Eliason, Robert; McMahon, Terence
A demonstration has been developed which nicely illustrates the temperature effect on reaction rates and the general rule relating temperature increases with rate increases.
Eliason, Robert; McMahon, Terence J. Chem. Educ. 1981, 58, 354.
Kinetics |
Reactions
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
What is the rate-limiting step of a multistep reaction?  Murdoch, Joseph R.
The purpose of this paper is to point out the circumstances where analogies can be used successfully and to develop a generalization which can be used for all reactions, including those with polymolecular steps.
Murdoch, Joseph R. J. Chem. Educ. 1981, 58, 32.
Kinetics |
Reactions |
Rate Law
A specific heat analogy  McCullough, Brother Thomas, CSC
An analogy for helping students to understand the concepts of specific heat and heat transfer problems.
McCullough, Brother Thomas, CSC J. Chem. Educ. 1980, 57, 896.
Calorimetry / Thermochemistry |
Chemometrics
Sweet heat  O'Connor, Rod
What would be the net enthalpy change for the complete combustion of 5.00 g of glucose at body temperature?
O'Connor, Rod J. Chem. Educ. 1980, 57, 889.
Carbohydrates |
Calorimetry / Thermochemistry |
Chemometrics
Teaching and learning problem solving in science. Part I: A general strategy  Mettes, C. T. C. W.; Pilot, A.; Roossink, H. J.; Kramers-Pals, H.
A systematic approach to solving problems and on designing instruction where students learn this approach.
Mettes, C. T. C. W.; Pilot, A.; Roossink, H. J.; Kramers-Pals, H. J. Chem. Educ. 1980, 57, 882.
Chemometrics
Empirical formulas - A ratio problem  Knox, Kerro
A problem involving an analogy between ratios of boys to girls given their average weights and percentage composition of the class by weight.
Knox, Kerro J. Chem. Educ. 1980, 57, 879.
Chemometrics |
Molecular Properties / Structure
Mole fraction analogies  DeLorenzo, Ron
An analogy to help students solve concentration problems.
DeLorenzo, Ron J. Chem. Educ. 1980, 57, 733.
Stoichiometry |
Chemometrics |
Solutions / Solvents
Dissociation of a weak acid  Ladd, M. F. C.
An earlier treatment of the equilibrium of a weak acid in water gives, for certain ranges of concentration, significantly incorrect results.
Ladd, M. F. C. J. Chem. Educ. 1980, 57, 669.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Chemometrics
Chemical Kinetics: Reaction Rates  Mickey, Charles D.
Reviews the chemistry behind factors that influence the rates of chemical reactions.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 659.
Rate Law |
Kinetics |
Reactions |
Catalysis
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Significant figures: Removing the zero mystique  Treptow, Richard S.
Zeros are significant if they appear before a number takes on size or as stand-ins for unknown digits.
Treptow, Richard S. J. Chem. Educ. 1980, 57, 646.
Chemometrics
Whatever became of significant figures? The trend toward numerical illiteracy  Anderlik, Barbara
How does one persuade students, when working with physical measurements, to part with excess digits and become numerically literate.
Anderlik, Barbara J. Chem. Educ. 1980, 57, 591.
Chemometrics
An illustration to demonstrate the smallness of molecules  Kingston, David W.
An exercise in dimensional analysis.
Kingston, David W. J. Chem. Educ. 1980, 57, 506.
Chemometrics
Correlating Celsius and Fahrenheit temperatures by the "unit calculus"  Gorin, George
Deriving the mathematical relationship between Celsius and Fahrenheit temperatures.
Gorin, George J. Chem. Educ. 1980, 57, 350.
Nomenclature / Units / Symbols |
Chemometrics
Photochemical reactions of tris(oxalato)iron (III): A first year chemistry experiment  Baker, A. D.; Casadevell, A.; Gafney, H. D.; Gellender, M.
An experiment based on the photoreduction of potassium ferrioxalate.
Baker, A. D.; Casadevell, A.; Gafney, H. D.; Gellender, M. J. Chem. Educ. 1980, 57, 314.
Photochemistry |
Kinetics |
Reactions
Adopting SI units in introductory chemistry  Davies, William G.; Moore, John W.
Conventions associated with SI units, conversion relationships commonly used in chemistry, and a roadmap method for solving stoichiometry problems.
Davies, William G.; Moore, John W. J. Chem. Educ. 1980, 57, 303.
Nomenclature / Units / Symbols |
Chemometrics
Adding another dimension to dimensional analysis  DeLorenzo, Ronald
Adding words to typical dimensional analysis work to improve understanding and communication.
DeLorenzo, Ronald J. Chem. Educ. 1980, 57, 302.
Chemometrics
An introductory level kinetics investigation  McGarvey, J. E. B.; Knipe, A. C.
A kinetic study of the hydrolysis of 3-bromo-3-phenylpropanoic acid.
McGarvey, J. E. B.; Knipe, A. C. J. Chem. Educ. 1980, 57, 155.
Kinetics |
Rate Law |
Mechanisms of Reactions
Rossini, William Tell and the iodine clock reaction: A lecture demonstration  Brice, L. K.
The iodine clock reaction is timed to coincide with three portions of the William Tell Overture.
Brice, L. K. J. Chem. Educ. 1980, 57, 152.
Reactions |
Kinetics |
Rate Law
Significant digits: Numbers and their logarithms  Clever, H. Lawrence
The number of digits to report in a base 10 logarithm is an unresolved problem for many students.
Clever, H. Lawrence J. Chem. Educ. 1979, 56, 824.
Chemometrics |
pH
The kinetics of running  Larsen, Russell D.
The consideration of running as a rate process has several advantages for a student studying chemical kinetics for the first time.
Larsen, Russell D. J. Chem. Educ. 1979, 56, 651.
Kinetics |
Rate Law
The physically meaningful solution of the quadratic equation  Levy, Mel; Byers, Larry D.
Shows that the potential ambiguity of two unequal but physically meaningful roots never arises.
Levy, Mel; Byers, Larry D. J. Chem. Educ. 1979, 56, 526.
Chemometrics
Calculators in freshman chemistry - An alternative view  Gold, Marvin
There is a serious negative aspect to allowing freshmen use of calculators in chemistry.
Gold, Marvin J. Chem. Educ. 1979, 56, 526.
Chemometrics
The temperature dependence of the equilibrium constant  Burness, James H.
This exam question tests a student's ability to derive the temperature dependence of an equilibrium constant not by qualitatively applying Le Chatelier's principle, but by understanding the relationship between the kinetics of the equation and the value of Keq.
Burness, James H. J. Chem. Educ. 1979, 56, 395.
Equilibrium |
Kinetics
The hydrolysis of p-nitrophenyl beta-gIucoside: An undergraduate experiment on the effect of temperature on reaction rate  Schram, Alfred. C.
The intensely colored p-nitrophenolate ion formed during basic hydrolysis allows a quick and convenient determination of the amount of product formed.
Schram, Alfred. C. J. Chem. Educ. 1979, 56, 351.
Kinetics |
Rate Law
Measurement errors: A lecture demonstration  Munn, Robert J.
A lecture demonstration to realistically discuss precision, accuracy, averaging, data rejection, and significant digits.
Munn, Robert J. J. Chem. Educ. 1979, 56, 267.
Chemometrics
How many significant digits in 0.05C?  Power, James D.
Textbooks abound with erroneous examples, such as 33F = 0.56C.
Power, James D. J. Chem. Educ. 1979, 56, 239.
Chemometrics |
Nomenclature / Units / Symbols
Calculators, slide rules, and significant figures  McCullough, Thomas, CSC
Using a slide rule to help students understand the concept of significant figures before using a calculator.
McCullough, Thomas, CSC J. Chem. Educ. 1979, 56, 238.
Chemometrics
A few chemical magic tricks based on the clock reaction  Shigematsu, Euchi
Three tricks based on the clock reaction involving KIO3 and NaHSO3.
Shigematsu, Euchi J. Chem. Educ. 1979, 56, 184.
Reactions |
Kinetics
Rates of reaction - Analogies  Smith, Douglas D.
Demonstrations of / analogies for zero- and first-order reactions.
Smith, Douglas D. J. Chem. Educ. 1979, 56, 47.
Rate Law |
Kinetics
Participatory lecture demonstrations  Battino, Rubin
Examples of participatory lecture demonstrations in chromatography, chemical kinetics, balancing equations, the gas laws, the kinetic-molecular theory, Henry's law, electronic energy levels in atoms, translational, vibrational, and rotational energies of molecules, and organic chemistry.
Battino, Rubin J. Chem. Educ. 1979, 56, 39.
Chromatography |
Kinetic-Molecular Theory |
Kinetics |
Stoichiometry |
Gases |
Atomic Properties / Structure |
Molecular Properties / Structure
The Color blind traffic light  Boulanger, Mathilda M.
A fascinating oscillating reaction.
Boulanger, Mathilda M. J. Chem. Educ. 1978, 55, 584.
Kinetics
Intuitive and general approach to acid-base equilibrium calculations  Felty, Wayne L.
The purpose of this paper is to show that the usual intuitive approach used in general chemistry can be readily extended without introduction of additional, sophisticated concepts to give the general, exact expression and to point out the pedagogical advantage of its use.
Felty, Wayne L. J. Chem. Educ. 1978, 55, 576.
Acids / Bases |
Equilibrium |
Chemometrics
Pressure calculations   Schultz, Charles W.
This question requires students to be able to distinguish two kinds of pressure: Boyles law pressure of gas (that depends on volume) from the equilibrium vapor pressure above a liquid (that does not).
Schultz, Charles W. J. Chem. Educ. 1978, 55, 515.
Gases |
Chemometrics
A Demonstration of burning magnesium and dry ice  Driscoll, Jerry A.
This demonstration is a new, exciting approach to an older demonstration.
Driscoll, Jerry A. J. Chem. Educ. 1978, 55, 450.
Thermodynamics |
Kinetics |
Reactions
Dissolving iron nails: A kinetics experiment  Monaghan, Charles P.; Fanning, James C.
These authors share a kinetics experiment that appeals to students due to its familiarity.
Monaghan, Charles P.; Fanning, James C. J. Chem. Educ. 1978, 55, 400.
Oxidation / Reduction |
Kinetics
Balancing an atypical redox equation  Carrano, S. A.
The author presents a particularly tricky redox problem and walks readers through a solution.
Carrano, S. A. J. Chem. Educ. 1978, 55, 382.
Chemometrics |
Oxidation / Reduction |
Stoichiometry
Chemical predictions from pKa values  Hassanali, A.
The problem presented here develops student understanding of both pKa calculations and organic acids.
Hassanali, A. J. Chem. Educ. 1978, 55, 378.
Acids / Bases |
pH |
Chemometrics
Teaching the method of successive approximations  Nassiff, Peter J.; Boyko, E. R.
The purpose of this papers is to help the teacher show the student why basic methods of successive approximations work, how they may be applied, and under what conditions it will be successful.
Nassiff, Peter J.; Boyko, E. R. J. Chem. Educ. 1978, 55, 376.
Chemometrics |
Acids / Bases |
Gases
The Landolt, "Old Nassau", and variant reactions   Moss, Arthur
Instructions for a modification to the classic "iodine clock" reaction.
Moss, Arthur J. Chem. Educ. 1978, 55, 244.
Kinetics |
Reactions
Collision theory  Myers, Richard S.
The question presented here can be employed in general or physical chemistry courses.
Myers, Richard S. J. Chem. Educ. 1978, 55, 243.
Chemometrics |
Thermodynamics |
Kinetics
The chemical equation. Part I: Simple reactions  Kolb, Doris
A chemical equation is often misunderstood by students as an "equation" that is used in chemistry. However, a more accurate description is that it is a concise statement describing a chemical reaction expressed in chemical symbolism.
Kolb, Doris J. Chem. Educ. 1978, 55, 184.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols |
Reactions
Reaction rates for a homogeneously catalyzed reaction  Nechamkin, Howard; Keller, Elhannan; Goodkin, Jerome
The reaction of KMnO4 with hydrogen in an acidic medium is an example of a homogeneously catalyzed reaction that can be performed by college freshmen.
Nechamkin, Howard; Keller, Elhannan; Goodkin, Jerome J. Chem. Educ. 1977, 54, 775.
Rate Law |
Kinetics |
Catalysis
A pre-general chemistry course for the underprepared student  Krannich, Larry K.; Patick, David; Pevear, Jesse
Outline and evaluation of a course in chemical problem solving.
Krannich, Larry K.; Patick, David; Pevear, Jesse J. Chem. Educ. 1977, 54, 730.
Enrichment / Review Materials |
Chemometrics
Chemical equilibrium: Analogies that separate the mathematics from the chemistry  DeLorenzo, Ronald A.
Demonstrates that the mathematics of chemical equilibria are not difficult, particularly when put in a non-chemical context.
DeLorenzo, Ronald A. J. Chem. Educ. 1977, 54, 676.
Equilibrium |
Chemometrics
On significant figures  MacCarthy, Patrick
Illustrating the decrease in uncertainty that accompanies an increase in significant figures.
MacCarthy, Patrick J. Chem. Educ. 1977, 54, 578.
Chemometrics
Water dipping kinetics. A physical analog for chemical kinetics  Birk, James P.; Gunter, S. Kay
Physical analogs of zero-, first, and second-order kinetics using the volume of water transferred by a dipper oriented in different directions with respect to a basin of water.
Birk, James P.; Gunter, S. Kay J. Chem. Educ. 1977, 54, 557.
Kinetics |
Equilibrium |
Rate Law
Simple classroom experiment on uncertainty of measurement  Sen, B.
This activity demonstrates several aspects regarding the statistical treatment of data.
Sen, B. J. Chem. Educ. 1977, 54, 468.
Chemometrics
Spot plate chemistry. General chemistry experiments in a depression  Birk, James P.; Ronan, Thomas H.
Examples of spot plate chemistry involving the chemical composition of insoluble salts, colorimetric analysis, and kinetics.
Birk, James P.; Ronan, Thomas H. J. Chem. Educ. 1977, 54, 328.
Kinetics
Chemical oscillations as an undergraduate experiment  Deb, B. M.
Hitherto unreported observations regarding the Briggs-Rauscher oscillating system.
Deb, B. M. J. Chem. Educ. 1977, 54, 236.
Reactions |
Kinetics
Calculators and significant figures  Satek, Larry C.
A demonstration on the topic of significant figures and random errors.
Satek, Larry C. J. Chem. Educ. 1977, 54, 177.
Chemometrics
The Old Nassau reaction  Alyea, Hubert N.
A description of the chemistry and history of the Old Nassau reactions.
Alyea, Hubert N. J. Chem. Educ. 1977, 54, 167.
Kinetics |
Reactions
Cookbook dimensional analysis  DeLorenzo, Ronald
Frequently, teachers will hear, "...it looks easy when you do it..." when teaching dimensional analysis. This teacher advises others on a way to help students gain self-efficacy with this problem solving-strategy.
DeLorenzo, Ronald J. Chem. Educ. 1976, 53, 633.
Stoichiometry |
Chemometrics
A criterion for the simple approximation in dissociation equilibria  Leffler, Amos J.
The author demonstrates quantitative criterion for the assumption that permits the neglect of the amount of dissociated species in the denominator of the dissociation equation.
Leffler, Amos J. J. Chem. Educ. 1976, 53, 460.
Acids / Bases |
Equilibrium |
Chemometrics
Faster than a speeding bullet. A freshman kinetics experiment  Cassen, T.
A description of a "clock" experiment that is useful for a freshman level experiment dealing with kinetics.
Cassen, T. J. Chem. Educ. 1976, 53, 197.
Kinetics
Coffee cup kinetics. A general chemistry experiment  Birk, James P.
This laboratory activity attempts to fill the void of a lack of kinetics experiments in general chemistry.
Birk, James P. J. Chem. Educ. 1976, 53, 195.
Kinetics
A simple general chemistry kinetics experiment  Gellender, Martin
The oxidation of iodide ion by persulfate provides a gradual and clearly distinguishable appearance of color as the reaction proceeds.
Gellender, Martin J. Chem. Educ. 1975, 52, 806.
Kinetics |
Rate Law |
Reactions |
Oxidation / Reduction
A logic diagram for teaching stoichiometry  Tyndall, John R.
Presents a diagram that the author found helpful in teaching the fundamentals of stoichiometry.
Tyndall, John R. J. Chem. Educ. 1975, 52, 492.
Stoichiometry |
Chemometrics
Maximizing profits in equilibrium processes  Rish, Ronald J.
Provides the student with an example in which both chemical principles and calculus are applied to a realistic industrial situation where profits are a must.
Rish, Ronald J. J. Chem. Educ. 1975, 52, 441.
Equilibrium |
Industrial Chemistry |
Chemometrics
Capillary flow. A versatile analog for chemical kinetics  Davenport, Derek A.
A number of novel ways in which capillary flow can be used as a mechanical analog for chemical kinetics.
Davenport, Derek A. J. Chem. Educ. 1975, 52, 379.
Kinetics
Molar solubility calculations and the control equilibrium  Chaston, S. H. H.
The Control-Equilibrium method uses as its starting point a precise procedure for obtaining the equilibrium that accounts for the bulk of the decomposition of starting materials.
Chaston, S. H. H. J. Chem. Educ. 1975, 52, 206.
Solutions / Solvents |
Chemometrics |
Equilibrium
Illustrating large and small numbers. A problem for the birds  Sattler, Louis
A calculation designed to illustrate the relative size of Avogadro's number. The solution from p. 181 is reproduced in this PDF.
Sattler, Louis J. Chem. Educ. 1975, 52, 180.
Chemometrics |
Stoichiometry
FeSCN2+ - A computer aid to the CHEM Study experiment  McCall, Arthur J., Jr.
A Fortran program assists in making the calculations that accompany investigation of the iron(III)thiocyanate equilibrium system.
McCall, Arthur J., Jr. J. Chem. Educ. 1975, 52, 118.
Equilibrium |
Aqueous Solution Chemistry |
Chemometrics
Kinetics simulation program  Breneman, G. L.
A Basic program that simulates the spectrophotometric study of a reaction and allows the determination of rate law values from absorbance data.
Breneman, G. L. J. Chem. Educ. 1975, 52, 106.
Kinetics |
Rate Law
Discussion: Mathematics in the first-year chemistry course  Richter, G. P.
Report of the Third Biennial Conference on Chemical Education and the Second Centennial of Chemistry Celebration.
Richter, G. P. J. Chem. Educ. 1975, 52, 19.
Conferences |
Professional Development |
Chemometrics
A stabilized linear direct reading conductance apparatus. The solvolysis of t-butyl chloride  Cyr, T.; Prudhomme, J.; Zador, M.
A simple ac conductivity apparatus for experiments in chemical kinetics is described; the instrument is sufficiently reliable that it can be used by first year students and assembled in a few hours.
Cyr, T.; Prudhomme, J.; Zador, M. J. Chem. Educ. 1973, 50, 572.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Electrochemistry |
Kinetics
A mini-computer generated freshman kinetics experiment  Cummins, Jack D.; Wartell, M. A.
The intent of this exercise is to teach simple solution kinetics and expose students to the basics of computer programming.
Cummins, Jack D.; Wartell, M. A. J. Chem. Educ. 1973, 50, 544.
Kinetics
Kinetics program for iron(III) catalyzed decomposition of hydrogen peroxide  Merrer, Robert J.
A computer program for use in general chemistry has been written in Basic that calculates rate constants and activation energy for the iron(III) catalyzed decomposition of hydrogen peroxide.
Merrer, Robert J. J. Chem. Educ. 1973, 50, 514.
Kinetics |
Rate Law |
Catalysis
An oscillating iodine clock  Briggs, Thomas S.; Rauscher, Warren C.
An oscillating iodine clock reaction that gives striking cyclic changes from colorless to gold to blue using simple reagents.
Briggs, Thomas S.; Rauscher, Warren C. J. Chem. Educ. 1973, 50, 496.
Reactions |
Kinetics
A computer program for heat of combustion calculations  Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol
A computer program is available for converting raw combustion data to the standard state energy of combustion.
Wilhoit, Randolph C.; Bell, Mary Ellen; Subach, Daniel J.; Chen, Carol J. Chem. Educ. 1973, 50, 486.
Calorimetry / Thermochemistry |
Chemometrics
Cooking Succulent Roasts  Plumb, Robert C.; Davis, Adelle
Allowing a roast to gradually warm to the desired internal temperature produces superior results.
Plumb, Robert C.; Davis, Adelle J. Chem. Educ. 1973, 50, 425.
Consumer Chemistry |
Food Science |
Kinetics |
Equilibrium |
Rate Law |
Applications of Chemistry
Cooking Succulent Roasts  Plumb, Robert C.; Davis, Adelle
Allowing a roast to gradually warm to the desired internal temperature produces superior results.
Plumb, Robert C.; Davis, Adelle J. Chem. Educ. 1973, 50, 425.
Consumer Chemistry |
Food Science |
Kinetics |
Equilibrium |
Rate Law |
Applications of Chemistry
A quick scored item analysis for objective tests  Stokes, Jimmy C.; Strickland, James F., Jr.
Analyzing test data with students in the classroom.
Stokes, Jimmy C.; Strickland, James F., Jr. J. Chem. Educ. 1973, 50, 354.
Chemometrics
Enthalpy and entropy of evaporation from measured vapor pressure using a programmable desk calculator  McEachern, Douglas M.
A program for a calculator that calculates the heat of evaporation of a solid or a liquid and the corresponding entropy change.
McEachern, Douglas M. J. Chem. Educ. 1973, 50, 190.
Calorimetry / Thermochemistry |
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Chemometrics
Problem solving for chemistry (Peters, Edward I.)  Fiekers, Bernard A., S. J.

Fiekers, Bernard A., S. J. J. Chem. Educ. 1972, 49, A491.
Chemometrics
Chemical calculations (Benson, Sidney W.)  Melgaard, Kennett G.

Melgaard, Kennett G. J. Chem. Educ. 1972, 49, A98.
Chemometrics
Significant digits in logarithm-antilogarithm interconversions  Jones, Donald E.
Most textbooks are in error in the proper use of significant digits when interconverting logarithms and antilogarithms.
Jones, Donald E. J. Chem. Educ. 1972, 49, 753.
Nomenclature / Units / Symbols |
Chemometrics
A "relevant" first experiment for freshman chemistry laboratory  Macomber, Roger S.
This activity involves popping corn and introduces students to the processes of observation and inference as well as the use of the analytical balance and gravimetric procedure.
Macomber, Roger S. J. Chem. Educ. 1972, 49, 714.
Chemometrics
Pseudo first-order kinetics  Corbett, John F.
A kinetic study of second-order reactions under first-order conditions can yield accurate second-order rate constants provided an empirical allowance is made for the depletion of the reactant in excess.
Corbett, John F. J. Chem. Educ. 1972, 49, 663.
Kinetics |
Reactions |
Rate Law
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
An interactive program for teaching pH and logarithms  Eskinazi, Jak; Macero, Daniel J.
A computer program written in APL for teaching students logarithms and pH calculations.
Eskinazi, Jak; Macero, Daniel J. J. Chem. Educ. 1972, 49, 571.
pH |
Acids / Bases |
Chemometrics
The hydroxylaminolysis of penicillin G. A kinetic experiment  Stuckwisch, C. G.
Penicillin reacts with hydroxylamine to yield a hydroxamic acid, which gives a colored complex with iron (III).
Stuckwisch, C. G. J. Chem. Educ. 1972, 49, 539.
Kinetics |
Rate Law |
Titration / Volumetric Analysis
Passage of fruit flies through a hole. A model for a reversible chemical reaction  Runquist, Elizabeth A.; Runquist, Olaf
The passage of fruit flies through a single orifice provides an excellent model for illustrating the principles of equilibrium and chemical dynamics; the results are found to be temperature dependent and reproducible.
Runquist, Elizabeth A.; Runquist, Olaf J. Chem. Educ. 1972, 49, 534.
Reactions |
Equilibrium |
Kinetics |
Rate Law
Aquation of tris-(1,10-phenanthroline) iron(II) in acid solution. A kinetics experiment  Twigg, Martyn V.
The aquation of tris-(1,10-phenanthroline) iron(II) in acid solution is a reaction for which reliable kinetic data are available and it has an easily measured rate at accessible temperatures.
Twigg, Martyn V. J. Chem. Educ. 1972, 49, 371.
Kinetics |
Rate Law
The two-place logarithm table. An aid to understanding and use of logarithms  Freiser, Henry
Presents a two-place logarithm table that serves to aid the understanding and use of logarithms.
Freiser, Henry J. Chem. Educ. 1972, 49, 325.
Chemometrics
The color blind traffic light. An undergraduate kinetics experiment using an oscillating reaction  Lefelhocz, John F.
This kinetics experiment involves the student with a qualitative study of the influence of chemical and physical variables on the rate of a specific reaction.
Lefelhocz, John F. J. Chem. Educ. 1972, 49, 312.
Kinetics |
Reactions |
Rate Law
Programmable calculators. Simulated experiments  Runquist, O.; Olsen, Rodney; Snadden, Bruce
Describes how titration and reaction rate experiments can be simulated on a programmable calculator.
Runquist, O.; Olsen, Rodney; Snadden, Bruce J. Chem. Educ. 1972, 49, 265.
Acids / Bases |
Titration / Volumetric Analysis |
Quantitative Analysis |
Rate Law |
Kinetics |
pH
Density of a binary mixture. A classroom or laboratory exercise  Feinstein, H. I.
Provides a hypothetical problem in the density of a binary mixture.
Feinstein, H. I. J. Chem. Educ. 1972, 49, 111.
Physical Properties |
Chemometrics
Using alligation alternate to solve composition problems  Mancott, Anatol
Problems involving the composition of mixtures may be solved by using the relatively obscure method of "alligation alternate" in lieu of the standard algebraic procedure with no loss in accuracy; includes five examples.
Mancott, Anatol J. Chem. Educ. 1972, 49, 57.
Chemometrics |
Solutions / Solvents |
Isotopes
Computer program for the treatment of data for a kinetic study of the persulfate-iodide clock reaction  Lyndrup, Mark L.
Notes the availability of a BASIC program designed to aid students in the treatment of data collected for a kinetic study of the clock reaction between the persulfate and iodide ions.
Lyndrup, Mark L. J. Chem. Educ. 1972, 49, 30.
Kinetics |
Reactions |
Rate Law
Audio taped explanations of freshman experimental calculations  Harrison, Aline M.
The authors have found audio tapes to be effective replacements for live, in-lab explanations of experimental calculations.
Harrison, Aline M. J. Chem. Educ. 1971, 48, 826.
Chemometrics |
Laboratory Management
SI units in physico-chemical calculations  Norris, A. C.
This article demonstrates how the adoption of SI units affects some of the more important physico-chemical calculations found at the undergraduate level.
Norris, A. C. J. Chem. Educ. 1971, 48, 797.
Nomenclature / Units / Symbols |
Chemometrics
Oxidation of ethanol by chromium(VI). A kinetics experiment for freshmen  Finlayson, Muriel E.; Lee, Donald G.
The experiment presented here generates a good deal of interest and gives clear cut results without the necessity of using elaborate equipment.
Finlayson, Muriel E.; Lee, Donald G. J. Chem. Educ. 1971, 48, 473.
Kinetics |
Oxidation / Reduction |
Alcohols
A study of the physical and chemical rates of CaCO3 dissolution in HCl  Bassow, Herbert; Hamilton, Doug; Schneeberg, Ben; Stad, Ben
The authors describe the experimental procedure and a discussion of results for a study of the physical and chemical rates of CaCO3 dissolution in HCl.
Bassow, Herbert; Hamilton, Doug; Schneeberg, Ben; Stad, Ben J. Chem. Educ. 1971, 48, 327.
Acids / Bases |
Kinetics |
Reactions |
Rate Law
Miscellaneous  Alyea, Hubert N.
These twelve overhead projection demonstrations include rates of reactions, clock reactions, the effect of temperature and the presence of a catalyst on the decomposition of hydrogen peroxide, the relationship between viscosity and temperature, equilibria, solubility product, and the common ion effect.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A437.
Oxidation / Reduction |
Kinetics |
Rate Law |
Reactions |
Acids / Bases |
Catalysis |
Equilibrium |
Precipitation / Solubility
Miscellaneous  Alyea, Hubert N.
13 demonstrations, including electrophoresis, electrolysis, corrosion inhibition, endothermic and exothermic reactions, crystals and crystallization, reactions with sodium, and the kinetics of H2O2 decomposition.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A387.
Electrophoresis |
Dyes / Pigments |
Electrochemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Reactions |
Crystals / Crystallography |
Kinetics
Acid-base reaction parameters  Freiser, Henry
The author demonstrates how the combined algebraic graphical approach can be extended to acid-base titration curve calculations as well as to buffer and sharpness index formulation.
Freiser, Henry J. Chem. Educ. 1970, 47, 809.
Acids / Bases |
pH |
Titration / Volumetric Analysis |
Chemometrics
Grading the copper sulfide experiment  Novick, Seymour
The author recommends a more liberal analysis in grading the copper sulfide experiment.
Novick, Seymour J. Chem. Educ. 1970, 47, 785.
Stoichiometry |
Chemometrics
Hydrolysis of benzenediazonium ion  Sheats, John E.; Harbison, Kenneth G.
Presents a more convenient approach to studying the kinetics of the hydrolysis of benzenediazonium ion.
Sheats, John E.; Harbison, Kenneth G. J. Chem. Educ. 1970, 47, 779.
Aromatic Compounds |
Nucleophilic Substitution |
Kinetics
Chemical exponentialism for beginners  Larson, G. Olof
Presents a method for introducing and reviewing exponential mathematical operations.
Larson, G. Olof J. Chem. Educ. 1970, 47, 693.
Chemometrics
Prolonging death (in apples)  Plumb, Robert C.
Using controlled atmosphere storage to prolong the freshness of vegetables and fruits after they have been harvested.
Plumb, Robert C. J. Chem. Educ. 1970, 47, 518.
Equilibrium |
Kinetics |
Agricultural Chemistry |
Applications of Chemistry |
Gases
The Methanol Lighter  Bailar, John C., Jr.
The methanol lighter illustrates the roles that thermodynamics, kinetics, and catalysis play in determining if a reaction will take place.
Bailar, John C., Jr. J. Chem. Educ. 1970, 47, 272.
Thermodynamics |
Kinetics |
Catalysis |
Consumer Chemistry |
Applications of Chemistry
Hydrolysis of sodium carbonate  Nakayama, F. S.
Presents a procedure for obtaining the ion concentrations of the various component species produced by the hydrolysis of sodium carbonate.
Nakayama, F. S. J. Chem. Educ. 1970, 47, 67.
Aqueous Solution Chemistry |
Chemometrics |
pH
Component concentrations in solutions of weak acids  Goldish, Dorothy M.
presents a new approach to teaching the subject of weak acid equilibria and its associated calculations.
Goldish, Dorothy M. J. Chem. Educ. 1970, 47, 65.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Chemometrics |
pH
Essential Math for the Sciences: Algebra, Trigonometry, and Vectors (Beiser, Arthur)  Reuland, Donald J.

Reuland, Donald J. J. Chem. Educ. 1969, 46, A899.
Chemometrics
Volkswagen versus the hummingbird  Nebbia, Giorgio
Questions the cited (046-07-0455) thermodynamic calculations.
Nebbia, Giorgio J. Chem. Educ. 1969, 46, 701.
Thermodynamics |
Calorimetry / Thermochemistry |
Chemometrics
LTE.  Crocker, Roger
The author points out that the objections raised to his earlier work are academic.
Crocker, Roger J. Chem. Educ. 1969, 46, 699.
Stoichiometry |
Chemometrics
LTE. Algebra and chemical equations  Copley, George Novello
The author questions the mathematic validity of the cited work.
Copley, George Novello J. Chem. Educ. 1969, 46, 699.
Stoichiometry |
Chemometrics
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A.
(1) When is the rule valid that the rate of reaction approximately doubles with a ten-degree temperature rise? - answer by House. (2) On the colors of transition metal complexes. (3) On an electrolysis experiment in which an acid solution is used to minimize the hydrolysis of Cu 2+. - answer by Campbell.
Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A. J. Chem. Educ. 1969, 46, 674.
Rate Law |
Kinetics |
Transition Elements |
Coordination Compounds |
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases
The law of mass action  Berline, Steven; Bricker, Clark
It is the purpose of this paper to present a derivation of the Law of Mass Action that should have meaning and could be used at an elementary level.
Berline, Steven; Bricker, Clark J. Chem. Educ. 1969, 46, 499.
Equilibrium |
Rate Law |
Kinetics
Fuel conversion in transport phenomena  Gerlach, E. R.
Calculations comparing the fuel efficiency of a hummingbird with that of a Volkswagen.
Gerlach, E. R. J. Chem. Educ. 1969, 46, 455.
Calorimetry / Thermochemistry |
Chemometrics |
Nomenclature / Units / Symbols
The principle of exponential change: Applications in chemistry, biochemistry, and radioactivity  Green, Frank O.
Examines the nature of exponential change and its applications to chemistry, biochemistry, and radioactivity, including radioactive decay, enzyme kinetics, colorimetry, spectrophotometry, and first order reaction kinetics.
Green, Frank O. J. Chem. Educ. 1969, 46, 451.
Nuclear / Radiochemistry |
Kinetics |
Enzymes |
Spectroscopy
The thermal decomposition of 2,5-dihydrofuran vapor: An experiment in gas kinetics  Rubin, Jay A.; Filseth, Stephen V.
Describes an experiment designed to illustrate manipulations with a vacuum system and the conduct of kinetic measurements.
Rubin, Jay A.; Filseth, Stephen V. J. Chem. Educ. 1969, 46, 57.
Kinetics |
Gases
Circular slide rule conversion of pH to [H+]  Grimm, Larry C.
This short note discusses the use of a circular slide rule to convert pH to [H+].
Grimm, Larry C. J. Chem. Educ. 1969, 46, 22.
Chemometrics |
Acids / Bases |
pH |
Aqueous Solution Chemistry
Hazardous chemicals data  National Fire Protection Association
Explains aspects of chemical hazard data and presents hazards associated with acetaldehyde.
National Fire Protection Association J. Chem. Educ. 1968, 45, A115.
Chemometrics |
Aldehydes / Ketones |
Laboratory Management
Probabilistic derivation of the kinetic rate equations  Lee, Tieh-Sheng; Kuffner, Roy J.
The use of the probabilistic approach is readily applicable to reaction kinetics if one considers the probability of the survival of the reactant molecule instead of the survival of a radioactive nucleus.
Lee, Tieh-Sheng; Kuffner, Roy J. J. Chem. Educ. 1968, 45, 430.
Kinetics
Bimolecular nucleophilic displacement reactions  Edwards, John O.
The bimolecular nucleophilic displacement reaction is important and should be included in any detailed discussion of kinetics and mechanism at an early undergraduate level.
Edwards, John O. J. Chem. Educ. 1968, 45, 386.
Reactions |
Nucleophilic Substitution |
Kinetics |
Mechanisms of Reactions
From stoichiometry and rate law to mechanism  Edwards, John O.; Greene, Edward F.; Ross, John
Examines the rules used by chemists as guidelines in developing mechanisms from stoichiometric and rate law observations.
Edwards, John O.; Greene, Edward F.; Ross, John J. Chem. Educ. 1968, 45, 381.
Stoichiometry |
Rate Law |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Reactive Intermediates
The revolution in elementary kinetics and freshman chemistry  Wolfgang, Richard
New developments in kinetics so fundamentally affect our most elementary conception of chemical change that they must inevitably be reflected in beginning courses in chemistry; includes an outline for freshmen on elementary chemical dynamics.
Wolfgang, Richard J. Chem. Educ. 1968, 45, 359.
Kinetics |
Rate Law |
Mechanisms of Reactions
Chemical dynamics for college freshmen  Hammond, George S.; Gray, Harry B.
Suggestions for topics regarding chemical dynamics to be considered in freshman chemistry.
Hammond, George S.; Gray, Harry B. J. Chem. Educ. 1968, 45, 354.
Thermodynamics |
Kinetics |
Reactions |
Mechanisms of Reactions |
Rate Law
Instantaneous precipitation from homogeneous solution  Hiskey, C. F.; Cantwell, F. F.
Procedure for the iodine clock reaction.
Hiskey, C. F.; Cantwell, F. F. J. Chem. Educ. 1967, 44, A727.
Precipitation / Solubility |
Aqueous Solution Chemistry |
Kinetics
Reaction Rates and Equilibria A. Rate of Reaction 1. Effect of concentration  Cooper, Edwin H., Alyea, Hubert N.
Demonstrations of the effect of concentration on the rate of a reaction include H2O2+Cu(NH3)4++, Zn+acid, and the "long delay" iodine clock reaction.
Cooper, Edwin H., Alyea, Hubert N. J. Chem. Educ. 1967, 44, A274.
Reactions |
Rate Law |
Kinetics
Chlorine trifluoride.  Steere, Norman V.
Summarizes the hazards associated with chlorine trifluoride.
Steere, Norman V. J. Chem. Educ. 1967, 44, A1057.
Chemometrics |
Laboratory Management
Alcohols to alkyl halides: A kinetics experiment for elementary chemistry courses  Cooley, J. H.; McCown, J. D.; Shill, R. M.
The rate measurement in this procedure is accomplished by direct observation of the change in length or volume of the insoluble layer of an alkyl bromide that is formed from a mixture of alcohol, hydrobromic acid, and sulfuric acid.
Cooley, J. H.; McCown, J. D.; Shill, R. M. J. Chem. Educ. 1967, 44, 280.
Alcohols |
Synthesis |
Kinetics |
Rate Law
The significance of significant figures  Pinkerton, Richard C.; Gleit, Chester E.
This paper is an attempt to clarify some of our ideas about numerical data, measurements, mathematical operations, and significant figures.
Pinkerton, Richard C.; Gleit, Chester E. J. Chem. Educ. 1967, 44, 232.
Nomenclature / Units / Symbols |
Chemometrics
The dissolution of tin in solutions of iodine  Davies, J. F.; Trotman-Dickenson, A. F.
The progress of this reaction can be followed by the loss of weight of a tin disc.
Davies, J. F.; Trotman-Dickenson, A. F. J. Chem. Educ. 1966, 43, 483.
Solutions / Solvents |
Precipitation / Solubility |
Kinetics |
Gravimetric Analysis
Acid-catalyzed hydrolysis of sucrose: A student study of a reaction mechanism  Dawber, J. G.; Brown, D. R.; Reed, R. A.
By extending the experimental work in a kinetic study of the hydrolysis of sucrose, the beginning student in chemistry can gather some insight into the mechanism of the reaction.
Dawber, J. G.; Brown, D. R.; Reed, R. A. J. Chem. Educ. 1966, 43, 34.
Kinetics |
Mechanisms of Reactions |
Reactions |
Carbohydrates
Statistical analysis of data in the general chemistry laboratory  Chapin, Earl C.; Burns, Richard F.
Students are asked to analyze data collected with respect to determinations of Dumas molecular weight, equivalent weight of a metal, equivalent weight of an acid, and molecular weight by freezing point depression.
Chapin, Earl C.; Burns, Richard F. J. Chem. Educ. 1965, 42, 564.
Chemometrics
The tin(II)-methyl orange reaction: A kinetics experiment for introductory chemistry  Haight, G. P., Jr.
The tin(II)-methyl orange reaction is followed with a Spec 20 to determine the order with respect to tin and methyl orange.
Haight, G. P., Jr. J. Chem. Educ. 1965, 42, 478.
Kinetics |
Dyes / Pigments
Computer program for the calculation of acid-base titration curves  Emery, Allan R.
Describes the development of a computer program for the calculation of acid-base titration curves.
Emery, Allan R. J. Chem. Educ. 1965, 42, 131.
Titration / Volumetric Analysis |
Acids / Bases |
Aqueous Solution Chemistry |
Chemometrics
Teaching ionic equilibrium: Use of log chart transparencies  Freiser, Henry; Fernando, Quintus
The use of graphical methods brings the problem of significance of various terms in complicated expressions into proper focus. Furthermore, a pictorial representation permits the student to see at a glance how the concentrations of various species in a system at equilibrium change with conditions.
Freiser, Henry; Fernando, Quintus J. Chem. Educ. 1965, 42, 35.
Aqueous Solution Chemistry |
Equilibrium |
Acids / Bases |
pH |
Chemometrics |
Brønsted-Lowry Acids / Bases
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Solubility and pH Calculations (Butler, James N.)  Ramette, R. W.

Ramette, R. W. J. Chem. Educ. 1964, 41, A970.
Aqueous Solution Chemistry |
Precipitation / Solubility |
pH |
Acids / Bases |
Chemometrics |
Enrichment / Review Materials
Problem solving in chemistry (Tilbury, Glen)  Whitney, Richard M.

Whitney, Richard M. J. Chem. Educ. 1964, 41, A532.
Chemometrics |
Enrichment / Review Materials
A new clock reaction preparation of dicinnamalacetone  King, L. Carroll; Ostrum, G. Kenneth
Presents a new clock reaction preparation of dicinnamalacetone.
King, L. Carroll; Ostrum, G. Kenneth J. Chem. Educ. 1964, 41, A139.
Reactions |
Kinetics |
Rate Law
Operator formalism in dimensional analysis  Musulin, Boris
Describes another approach to dimensional analysis.
Musulin, Boris J. Chem. Educ. 1964, 41, 622.
Chemometrics
Infrared spectrometry to study second order reaction kinetics  Gastambide, B.; Blanc, J.; Allamagny, Y.
The change studied is a synthesis reaction between menthol and phenyl isocyanate.
Gastambide, B.; Blanc, J.; Allamagny, Y. J. Chem. Educ. 1964, 41, 613.
Spectroscopy |
IR Spectroscopy |
Reactions |
Kinetics |
Synthesis
The hydration of carbon dioxide: A double clock experiment  Jones, P.; Haggett, Max L.; Longridge, Jethro L.
This extension of the "Soda Water Clock" experiment provides a quantitative kinetics investigation.
Jones, P.; Haggett, Max L.; Longridge, Jethro L. J. Chem. Educ. 1964, 41, 610.
Reactions |
Rate Law |
Kinetics |
pH |
Acids / Bases |
Aqueous Solution Chemistry
A kinetics experiment for first year chemistry  Shaefer, William P.
The exchange of iodine atoms between organic and inorganic iodides serves as a kinetics experiment for first year chemistry.
Shaefer, William P. J. Chem. Educ. 1964, 41, 558.
Kinetics |
Isotopes |
Rate Law
The oxidation of iodide ion by persulfate ion  Moews, P. C., Jr.; Petrucci, R. H.
Presents the oxidation of iodide ion by persulfate ion as an ideal reaction to study as part of an experiment on kinetics.
Moews, P. C., Jr.; Petrucci, R. H. J. Chem. Educ. 1964, 41, 549.
Oxidation / Reduction |
Reactions |
Kinetics |
Rate Law
The Carnot cycle and Maxwell's relations  Nash, Leonard K.
Maxwells equations can be derived from nothing more than the Carnot cycle and the deployment of the simplest plane geometry.
Nash, Leonard K. J. Chem. Educ. 1964, 41, 368.
Thermodynamics |
Chemometrics
Beer's law without calculus  Pinkerton, Richard C.
There is no good reason for using calculus in the presentation of Beer's law.
Pinkerton, Richard C. J. Chem. Educ. 1964, 41, 366.
Chemometrics
A method of visual representation of three dimensional functions  Lemlich, Arthur; Zinsser, Hans H.
Lego blocks are used to visually represent three-dimensional functions.
Lemlich, Arthur; Zinsser, Hans H. J. Chem. Educ. 1964, 41, 165.
Chemometrics |
Mathematics / Symbolic Mathematics
A second order kinetics experiment  Teerlink, Wilford J.; Asay, Jeanette; Sugihara, James M.
Investigates the nucleophilic displacement reaction of ethyl p-toluenesulfonate by iodide in acetone.
Teerlink, Wilford J.; Asay, Jeanette; Sugihara, James M. J. Chem. Educ. 1964, 41, 161.
Kinetics |
Nucleophilic Substitution
Colorimetric chemical kinetics experiment  Corsaro, Gerald
This article describes an experiment in which a photocolorimetric technique is employed to follow a bimolecular reaction rate; the reactants are crystal violet and the hydroxide ion.
Corsaro, Gerald J. Chem. Educ. 1964, 41, 48.
Kinetics |
Rate Law |
Reactions
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
An amperometric-kinetic experiment emphasizing the importance of error treatment  Young, J. A.
Provides suggestions for student research based on an earlier article published in the Journal.
Young, J. A. J. Chem. Educ. 1963, 40, A139.
Undergraduate Research |
Kinetics |
Chemometrics
Kinetics for the undergraduate: Introduction  King, Edward L.
Introduces the ACS symposium entitled "Kinetics in the Undergraduate Curriculum."
King, Edward L. J. Chem. Educ. 1963, 40, 573.
Kinetics
KineticsEarly and often  Campbell, J. A.
Describes an approach to investigating kinetics and its application to the "blue bottle" experiment.
Campbell, J. A. J. Chem. Educ. 1963, 40, 578.
Kinetics |
Equilibrium |
Mechanisms of Reactions
Chemical calculations (Benson, Sidney W.)  Masterton, William L.

Masterton, William L. J. Chem. Educ. 1963, 40, 499.
Chemometrics |
Enrichment / Review Materials
Heterogeneous equilibria in general chemistry  Grotz, Leonard C.
Presents suggestions for approaching the subject of heterogeneous equilibria in general chemistry.
Grotz, Leonard C. J. Chem. Educ. 1963, 40, 479.
Equilibrium |
Kinetics
A simple kinetics experiment for general chemistry laboratory  Cone, W. H.; Hermens, R. A.
This simple kinetics experiment examines the oxidation of benzoic acid by potassium peroxodisulfate in the presence of catalytic amounts of silver ion.
Cone, W. H.; Hermens, R. A. J. Chem. Educ. 1963, 40, 421.
Kinetics |
Rate Law |
Oxidation / Reduction |
Catalysis
Method for determining order of a reaction  Zimmerman, Howard K.
The method presented here is a substitution process that expresses various rate laws in terms of one initial concentration only.
Zimmerman, Howard K. J. Chem. Educ. 1963, 40, 356.
Kinetics
Basic mathematics of science and engineering (Wood, Reuben E.)  Rosenberg, Robert M.

Rosenberg, Robert M. J. Chem. Educ. 1962, 39, A60.
Chemometrics |
Mathematics / Symbolic Mathematics |
Enrichment / Review Materials
Balancing ionic equations by the method of undetermined coefficients  Haas, Rudy; Gayer, Karl H.
Describes a mathematical method for balancing chemical equations.
Haas, Rudy; Gayer, Karl H. J. Chem. Educ. 1962, 39, 537.
Stoichiometry |
Chemometrics
Some aspects of chemical kinetics for elementary chemistry  Benson, Sidney W.
The author suggests greater efforts to address the issue of kinetics and reaction mechanisms in introductory chemistry.
Benson, Sidney W. J. Chem. Educ. 1962, 39, 321.
Kinetic-Molecular Theory |
Gases |
Kinetics |
Mechanisms of Reactions |
Descriptive Chemistry
A simple method for finding slopes  Hoare, James P.
Describes a simple method for determining the tangent at any point on a given curve using a solid glass rod.
Hoare, James P. J. Chem. Educ. 1961, 38, 570.
Chemometrics
An approach to complex equilibrium problems  Butler, James N.
Presents an approach to equilibrium problems that sets up enough equations relating the various concentrations present to define the system completely and then makes approximations that simplify the equations.
Butler, James N. J. Chem. Educ. 1961, 38, 141.
Equilibrium |
Chemometrics |
Acids / Bases |
Aqueous Solution Chemistry
A constant temperature reaction vessel for the thermal decomposition of solids  Prout, E. G.; Herley, P. J.
Describes an apparatus suitable for studying the thermal decomposition of potassium permanganate in high vacuum.
Prout, E. G.; Herley, P. J. J. Chem. Educ. 1960, 37, 643.
Laboratory Equipment / Apparatus |
Solids |
Rate Law |
Kinetics
Determination of reaction rates with an A.C. conductivity bridge: A student experiment  Chesick, J. P.; Patterson, A., Jr.
Describes a quantitative experiment in chemical kinetics suitable for advanced freshmen or physical chemistry; it involves a study of the solvolysis of tertiary butyl chloride by means of conductance measurements.
Chesick, J. P.; Patterson, A., Jr. J. Chem. Educ. 1960, 37, 242.
Conductivity |
Kinetics |
Rate Law
Use of radioisotopes in the college chemistry laboratory  Phillips, David; Maybury, Robert H.
Provides experiments and experiences working with constructed Geiger counters and radioisotopes.
Phillips, David; Maybury, Robert H. J. Chem. Educ. 1959, 36, 133.
Nuclear / Radiochemistry |
Isotopes |
Instrumental Methods |
Qualitative Analysis |
Kinetics
The stability of solutions for the iodine clock reaction  Kauffman, George B.; Hall, Charles R.
The results of attempts to stabilize solutions needed for the iodine clock reaction to allow long-term storage.
Kauffman, George B.; Hall, Charles R. J. Chem. Educ. 1958, 35, 577.
Reactions |
Kinetics |
Oxidation / Reduction |
Aqueous Solution Chemistry
Initial ratio of reactants to give, at equilibrium, a maximum yield of products  Haslam, E.
Derivation of the initial ratio of reactants to give, at equilibrium, a maximum yield of products.
Haslam, E. J. Chem. Educ. 1958, 35, 471.
Stoichiometry |
Chemometrics
An exact titration equation  Bolie, Victor W.
The purpose of this paper is to show the development of a titration equation for a precipitation reaction which is exact in the mathematical sense.
Bolie, Victor W. J. Chem. Educ. 1958, 35, 449.
Titration / Volumetric Analysis |
Chemometrics |
Undergraduate Research
Radioactive decay calculations without calculus  Guenther, William B.
Presents a method for half-life calculations that does not rely on the use of calculus.
Guenther, William B. J. Chem. Educ. 1958, 35, 414.
Chemometrics |
Nuclear / Radiochemistry
Solution of problems in chemistry  Trousdale, Everett A.
Presents a method for analyzing and solving mole calculations.
Trousdale, Everett A. J. Chem. Educ. 1958, 35, 299.
Chemometrics |
Stoichiometry
Dimensional analysis of chemical laws and theories  Benfey, O. Theodore
The dimensional analysis of the kinetic theory and organic structural theory.
Benfey, O. Theodore J. Chem. Educ. 1957, 34, 286.
Chemometrics |
Kinetic-Molecular Theory
On the second order rate equation  Said, Abdel S.
Presents a derivation of the rate equation of a second order reaction.
Said, Abdel S. J. Chem. Educ. 1957, 34, 251.
Kinetics |
Rate Law |
Chemometrics
Model of a potential energy surface  Dye, J. L.
Describes a physical, three-dimensional model of the potential energy surface for HBr.
Dye, J. L. J. Chem. Educ. 1957, 34, 215.
Kinetics |
Reactive Intermediates |
Reactions
A formula for indirect gravimetry  Fiekers, B. A.
Derivation of a formula for indirect gravimetry and application to a sample problem.
Fiekers, B. A. J. Chem. Educ. 1956, 33, 575.
Gravimetric Analysis |
Chemometrics |
Quantitative Analysis
A graphical method for determining the order of homogeneous reactions  Wright, J. H.; Black, J. H.; Coull, James
Provides a review of classical kinetics, derivation of the reaction order equation, and the determination of reaction order using a graph provided.
Wright, J. H.; Black, J. H.; Coull, James J. Chem. Educ. 1956, 33, 542.
Kinetics |
Chemometrics
Textbook errors: VII. The laws of reaction rates and of equilibrium  Mysels, Karol J.
Examines the frequently misplaced emphasis on the rate law of mass action, its fallacious use to prove the existence and form of equilibrium constants, and the occasional confusion of the two concepts.
Mysels, Karol J. J. Chem. Educ. 1956, 33, 178.
Kinetics |
Rate Law |
Equilibrium
The experimental determination of an error distribution  Nelson, Lloyd S.
Discusses an experiment in which students are asked to the average deviation and probable errors in their measurements.
Nelson, Lloyd S. J. Chem. Educ. 1956, 33, 126.
Chemometrics
Pocket slide rule for pH calculations  Pitzer, Edgar C.
A pocket slide rule may be used for direct conversion from hydrogen-ion activity to pH, or vice versa, without the need for arithmetical computation.
Pitzer, Edgar C. J. Chem. Educ. 1955, 32, 300.
pH |
Aqueous Solution Chemistry |
Chemometrics
Finding the rest point of an undamped analytical balance  Stacy, Irving F.
Provides a mathematical analysis for finding the rest point of an undamped analytical balance.
Stacy, Irving F. J. Chem. Educ. 1955, 32, 90.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Chemometrics
The formaldehyde clock reaction  Barrett, Richard L.
The formaldehyde clock reaction has some advantages over the familiar iodine clock and deserves to be better known.
Barrett, Richard L. J. Chem. Educ. 1955, 32, 78.
Reactions |
Kinetics |
Rate Law |
Aldehydes / Ketones
A general equation for approximate hydronium ion calculations  Drenan, James W.
Presents a general equation for simplifying calculations of the hydronium ion.
Drenan, James W. J. Chem. Educ. 1955, 32, 36.
Acids / Bases |
Aqueous Solution Chemistry |
pH |
Chemometrics
A kinetic analogy  Lemlich, Robert
This analogy, which clearly demonstrates the principles involved in a first-order reaction, is based on Poiseuille's law for the viscous flow of fluids.
Lemlich, Robert J. Chem. Educ. 1954, 31, 431.
Kinetics
Proper place problems  MacKenzie, Scott
A mathematical analysis of evaluating problems in which students are asked to place items in the correct order.
MacKenzie, Scott J. Chem. Educ. 1954, 31, 428.
Chemometrics
A log table for pH problems  Condon, Francis E.
Provides a readily remembered log table suitable for computing pH from hydronium-ion concentration and the reverse.
Condon, Francis E. J. Chem. Educ. 1954, 31, 323.
pH |
Chemometrics |
Acids / Bases |
Aqueous Solution Chemistry
Letters to the editor  Weaver, Elbert C.
Acknowledges and corrects an error in the referenced article regarding an example of Pearson's square.
Weaver, Elbert C. J. Chem. Educ. 1954, 31, 102.
Solutions / Solvents |
Chemometrics
Letters to the editor  Wescott, Emery N.
Points out an error in the referenced article regarding an example of Pearson's square.
Wescott, Emery N. J. Chem. Educ. 1954, 31, 101.
Solutions / Solvents |
Chemometrics
Mathematical chemistry  Swinbourne, Ellice S.; Lark, P. David
Examines some of the challenges involved in the design of a course in mathematics suitable for undergraduate chemists.
Swinbourne, Ellice S.; Lark, P. David J. Chem. Educ. 1953, 30, 570.
Chemometrics |
Mathematics / Symbolic Mathematics
A procedure for solving equilibrium problems  Boyd, Robert Neilson
A procedure for solving equilibrium problems is illustrated through several sample problems.
Boyd, Robert Neilson J. Chem. Educ. 1952, 29, 198.
Equilibrium |
Chemometrics |
Aqueous Solution Chemistry
A new experiment on reaction rates in general chemistry  Evans, Gordon G.
The author identifies the reaction between persulfate ion and iodide ion as well suited for investigating reaction rates in general chemistry.
Evans, Gordon G. J. Chem. Educ. 1952, 29, 139.
Kinetics |
Rate Law |
Aqueous Solution Chemistry
A clock reaction  Suryaraman, M. G.; Viswanathan, Arcot
Ferrous ions in an alkaline solution of a tartrate form of a soluble chelate complex that reacts sluggishly with iodine.
Suryaraman, M. G.; Viswanathan, Arcot J. Chem. Educ. 1951, 28, 386.
Reactions |
Kinetics |
Aqueous Solution Chemistry