TIGER

Journal Articles: 36 results
News from Online: The Chemistry of Sports  Janice Hall Tomasik
Presents a collection of chemistry-related, sports online resources on a variety of topics, including recent advances in nanotechnology that improve sports equipment and the athlete's nutrition and metabolism.
Tomasik, Janice Hall. J. Chem. Educ. 2008, 85, 1334.
Applications of Chemistry |
Bioenergetics |
Nanotechnology
Appreciating Oxygen  Hilton M. Weiss
Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that powers life on earth.
Weiss, Hilton M. J. Chem. Educ. 2008, 85, 1218.
Bioenergetics |
Metabolism |
Oxidation / Reduction |
Photosynthesis |
Thermodynamics
More on ClO and Related Radicals  William B. Jensen
The novel Lewis structure for the ClO radical and other related 13e isoelectronic species presented by Hirsch and Kobrak is identical to that proposed by Linnett over 40 years ago for the same species on the basis of his well-known double-quartet approach to Lewis structures.
Jensen, William B. J. Chem. Educ. 2008, 85, 783.
Ionic Bonding |
Lewis Structures |
Free Radicals
OMLeT—An Alternative Approach to Learning Metabolism: Glycolysis and the TCA Cycle as an Example  Charles M. Stevens, Dylan M. Silver, Brad Behm, Raymond J. Turner, and Michael G. Surette
Using PHP Hypertext Preprocessor scripting, the dynamic OMLeT (Online Metabolism Learning Tool) Web site is geared towards different learning styles and allows the student to process metabolic pathways (glycolysis and TCA cycle) via a user-defined approach.
Stevens, Charles M.; Silver, Dylan M.; Behm, Brad; Turner, Raymond J.; Surette, Michael G. J. Chem. Educ. 2007, 84, 2024.
Bioenergetics |
Enzymes |
Learning Theories |
Metabolism |
Proteins / Peptides
The Chemistry of Paper Preservation  Henry A. Carter
This article examines the applications of chemistry to paper preservation. The acid-catalyzed hydrolysis of cellulose accounts for the deterioration of paper in library books and other written records. To combat this threat to our written heritage, new permanent papers have been developed that are relatively chemically stable and undergo a very slow rate of deterioration.
Carter, Henry A. J. Chem. Educ. 2007, 84, 1937.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
Free Radicals |
Gas Chromatography |
HPLC |
pH |
Kinetics |
Rate Law
Biochemical View: A Web Site Providing Material for Teaching Biochemistry Using Multiple Approaches  Fernanda C. Dórea, Higor S. Rodrigues, Oscar M. M. Lapouble, Márcio R. Pereira, Mariana S. Castro, and Wagner Fontes
Biochemical View is a free, full access Web site whose main goals are to complement existing biochemistry instruction and materials, provide material to teachers preparing conventional and online courses, and popularize the use of these resources in undergraduate courses.
Dórea, Fernanda C.; Rodrigues, Higor S.; Lapouble, Oscar M. M.; Pereira, Márcio R.; Castro, Mariana S.; Fontes, Wagner. J. Chem. Educ. 2007, 84, 1866.
Amino Acids |
Bioenergetics |
Carbohydrates |
Enzymes |
Glycolysis |
Lipids |
Metabolism |
Fatty Acids
Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate  Bruce Mattson and Trisha Hoette
In this demonstration, a hydrogen flame is played across the face of an ice cube and the combustion is quenched in an incomplete state. The resulting solution contains a stable side-product, hydrogen peroxide, whose presence can be verified with two simple chemical tests.
Mattson, Bruce; Hoette, Trisha. J. Chem. Educ. 2007, 84, 1668.
Descriptive Chemistry |
Free Radicals |
Gases |
Molecular Properties / Structure |
Reactions |
Reactive Intermediates
Lewis Structure Representation of Free Radicals Similar to ClO  Warren Hirsch and Mark Kobrak
An unconventional Lewis structure is proposed to explain the properties of the free radical ClO and a series of its isoelectronic analogues, particularly trends in the spin density of these species.
Hirsch, Warren; Kobrak, Mark. J. Chem. Educ. 2007, 84, 1360.
Atmospheric Chemistry |
Computational Chemistry |
Covalent Bonding |
Free Radicals |
Lewis Structures |
Molecular Modeling |
MO Theory |
Valence Bond Theory
Chemical Composition of a Fountain Pen Ink   J. Martín-Gil, M. C. Ramos-Sánchez, F. J. Martín-Gil, and M. José-Yacamán
Black ink (Parker Quink) widely used in 19501980 is characterized and compared with other traditional inks. There is agreement that the main cause of ink decay is the iron(II) sulfate content, whose effect is stronger than the destructive action of acids.
Martín-Gil, J.; Ramos-Sánchez, M. C.; Martín-Gil, F. J.; José-Yacamán, M. J. Chem. Educ. 2006, 83, 1476.
Applications of Chemistry |
Bioinorganic Chemistry |
Dyes / Pigments |
Free Radicals |
Reactions
Teaching Biologically Relevant Chemistry throughout the Four-Year Chemistry Curriculum  Sarah R. Kirk, Todd P. Silverstein, and Jeffrey J. Willemsen
First-year chemistry students learn introductory chemistry using case studies which deal directly with human health issues and biological processes. Second-year students choose between two equivalent versions of the second-semester course: one that stresses synthetic organic chemistry and another that stresses bioorganic chemistry.
Kirk, Sarah R.; Silverstein, Todd P.; Willemsen, Jeffrey J. J. Chem. Educ. 2006, 83, 1171.
Bioorganic Chemistry |
Bioenergetics
Factors That Influence Relative Acid Strength in Water: A Simple Model  Michael J. Moran
The pKa's of diverse aqueous acids HA correlate well with the sum of two gas-phase properties: the HA bond-dissociation enthalpy and the electron affinity of the A radical. It is suggested that rather than bond strength alone or bond polarity, the sum of the enthalpies of these two steps is a fairly good indicator of relative acidity.
Moran, Michael J. J. Chem. Educ. 2006, 83, 800.
Acids / Bases |
Aqueous Solution Chemistry |
Atomic Properties / Structure |
Free Radicals
Useful Work of a Process  Norman C. Craig
Acknowledgment of a flaw in the article, Lets Drive Driving Force Out of Chemistry.
Craig, Norman C. J. Chem. Educ. 2006, 83, 703.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Useful Work of a Process  Bruno Lunelli
Clarifies a potentially misleading statement in the article, Lets Drive Driving Force Out of Chemistry.
Lunelli, Bruno. J. Chem. Educ. 2006, 83, 703.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
No "Driving Forces" in General Chemistry  Evguenii I. Kozliak
A simple and easy-to-remember explanation, that precipitation of a solid and/or formation of water are driving forces of those reactions or drive them to completion, still occurs among instructors.
Kozliak, Evguenii I. J. Chem. Educ. 2006, 83, 702.
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Introduction to Photolithography: Preparation of Microscale Polymer Silhouettes  Kimberly L. Berkowski, Kyle N. Plunkett, Qing Yu, and Jeffrey S. Moore
In this experiment, a glass microscope slide acts as the microchip. Students can pattern this "microchip" by layering negative photoresist on the slide using a solution containing monomer, crosslinker, photoinitiator, and dye. The students then cover the photoresist with a photomask, which is the negative of a computer-generated image or text printed on transparency film, and illuminate it with UV light. The photoresist in the exposed area polymerizes into a polymer network with a shape dictated by the photomask. The versatility of this technique is exemplified by allowing each student to fabricate virtually any shape imaginable, including his or her silhouette.
Berkowski, Kimberly L.; Plunkett, Kyle N.; Yu, Qing; Moore, Jeffrey S. J. Chem. Educ. 2005, 82, 1365.
Materials Science |
Applications of Chemistry |
Free Radicals |
Polymerization
Let's Drive "Driving Force" Out of Chemistry  Norman C. Craig
"Driving force" is identified as a misleading concept in analyzing spontaneous change. Driving force wrongly suggests that Newtonian mechanics and determinism control and explain spontaneous processes. The usefulness of the competition of ?H versus ?S in discussing chemical change is also questioned. Entropy analyseswhich consider the contributions to the total change in entropyare advocated.
Craig, Norman C. J. Chem. Educ. 2005, 82, 827.
Natural Products |
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
A Substitute for “Bromine in Carbon Tetrachloride”  Joshua M. Daley and Robert G. Landolt
Benzotrifluoride (BTF) is a suitable solvent substitute for carbon tetrachloride in experiments requiring application of bromine (Br2) in free radical or addition reactions with organic substrates. A 1 M solution of Br2 in BTF may be used to distinguish hydrocarbons based on the ease of abstraction of hydrogen atoms in thermally or light-induced free radical substitutions. Efficacy of minimization of solvent use, by aliquot addition to neat samples, has been established.
Daley, Joshua M.; Landolt, Robert G. J. Chem. Educ. 2005, 82, 120.
Alkenes |
Free Radicals |
Green Chemistry |
Qualitative Analysis |
Reactions
Methanol Cannon Demonstrations Revisited  David A. Dolson, Michael E. Dolson, Michael R. Hall, Rubin Battino, Lisa S. Jutte
Demonstrations involving methanol cannons and chain reactions.
Dolson, David A.; Dolson, Michael E.; Hall, Michael R.; Battino, Rubin; Jutte, Lisa S. J. Chem. Educ. 1995, 72, 732.
Free Radicals |
Reactions |
Alcohols
Introducing Atmospheric Reactions: A Systematic Approach for Students  Baird, N. Colin
Outline of the dominant reactions that occur in air, particularly with regard to atmospheric pollutants.
Baird, N. Colin J. Chem. Educ. 1995, 72, 153.
Photochemistry |
Free Radicals |
Atmospheric Chemistry
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
Nutrition: A Popular General Education Chemistry Course  Mathews, Frances
A course description for a popular nutrition course that includes elementary chemistry, biochemistry, and physiology. A course outline is included.
Mathews, Frances J. Chem. Educ. 1993, 70, 47.
Nutrition |
Bioenergetics |
Nonmajor Courses
Free-radical polymerization of acrylamide  Silversmith, Ernest F.
A rapid and foolproof thermal polymerization.
Silversmith, Ernest F. J. Chem. Educ. 1992, 69, 763.
Free Radicals |
Polymerization |
Reactions
A spectacular demonstration: 2H2 + O2 -> 2H2O  Skinner, James F.
Detonating hydrogen in a copper combustion chamber.
Skinner, James F. J. Chem. Educ. 1987, 64, 545.
Reactions |
Free Radicals
Teaching biochemistry: A topical approach  Maier, Mary L.
Teacher of biochemistry should consider wrapping some of the metabolic pathways and other reputedly laborious topics in packages that relate to the interests of the students.
Maier, Mary L. J. Chem. Educ. 1986, 63, 239.
Metabolism |
Bioenergetics
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Bioenergetics
Chain reaction wheel: An approach to free radical reactions  Monroe, Manus; Abrams, Karl
Using a "chain reaction wheel" to help students understand the mechanism of free radical reactions.
Monroe, Manus; Abrams, Karl J. Chem. Educ. 1985, 62, 467.
Free Radicals |
Reactions |
Mechanisms of Reactions
Using concepts of exercise and weight control to illustrate biochemical principles  Zimmerman, S. Scott
Forms of stored energy in the body; caloric balance, exercise, and weight control; a recommended exercise program; the physiological effects of endurance training; and the biochemistry of running a marathon.
Zimmerman, S. Scott J. Chem. Educ. 1984, 61, 882.
Metabolism |
Bioenergetics
Nutrition (diet) and athletics  Lineback, David R.
Nutritional requirements of athletes, energy use for various activities, carbohydrate loading, and myths and fallacies.
Lineback, David R. J. Chem. Educ. 1984, 61, 536.
Nutrition |
Bioenergetics |
Metabolism |
Calorimetry / Thermochemistry |
Carbohydrates
The metabolism of carbohydrates  
Traces the metabolism of carbohydrates and the flow of materials among the various resource pools in living systems.
J. Chem. Educ. 1979, 56, 534.
Carbohydrates |
Metabolism |
Bioenergetics
Questions [and] Answers  Campbell, J. A.
198-202. Five environmental and biochemical questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 520.
Enrichment / Review Materials |
Lipids |
Geochemistry |
Bioenergetics |
Natural Products |
Fatty Acids
Electrochemistry in organisms. Electron flow and power output  Chirpich, Thomas P.
Electrochemical calculations at an elementary level can be readily applied to living organisms and generate further student interest in electrochemistry.
Chirpich, Thomas P. J. Chem. Educ. 1975, 52, 99.
Electrochemistry |
Bioenergetics
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Parris, Michael
(1) Explains how free radicals differ from species such as NO3- and NH4+. (2) Explains why HI is a stronger acid than HF in aqueous solution. - answer by Parris. (3) Explains that it is possible to alter the half-life of a some radioactive processes through chemical means.
Young, J. A.; Malik, J. G.; Parris, Michael J. Chem. Educ. 1970, 47, 697.
Free Radicals |
Acids / Bases |
Aqueous Solution Chemistry |
Nuclear / Radiochemistry |
Isotopes
Demonstration of photochemistry and the dimerization and trapping of free radicals  Silversmith, Ernest F.
This demonstration uses simple equipment and involves a rapid, readily noticeable color change and also illustrates dimerization and the trapping of free radicals.
Silversmith, Ernest F. J. Chem. Educ. 1970, 47, 315.
Photochemistry |
Free Radicals |
Reactions
Biological oxidations and energy conservation  Kirschbaum, Joel
Examines the oxidative steps leading to the synthesis of ATP in living organisms and their metabolic control.
Kirschbaum, Joel J. Chem. Educ. 1968, 45, 28.
Bioenergetics |
Oxidation / Reduction |
Thermodynamics |
Metabolism
VI - Biochemistry in the introductory college chemistry course  Sturtevant, Julian M.
To whatever extent one wishes in the introductory chemistry course to stimulate students' interest in the subject, it seems important to include illustrations of the role chemical progress plays in biology.
Sturtevant, Julian M. J. Chem. Educ. 1967, 44, 184.
Enzymes |
Proteins / Peptides |
Bioenergetics
Balancing organic redox equations  Burrell, Harold P. C.
This paper presents a method for balancing organic redox equations based on the study of structural formulas and an artificial device - the use of hypothetical free radicals.
Burrell, Harold P. C. J. Chem. Educ. 1959, 36, 77.
Stoichiometry |
Oxidation / Reduction |
Free Radicals