TIGER

Journal Articles: 29 results
Yet Another Variation on the Electrolysis of Water at Iron Nails  Mark T. Stauffer and Justin P. Fox
Describes a variation on the electrolysis of water with iron nails in which a sharp contrast in the colors produced effectively demonstrates electrolysis and the diffusion of oxidized and reduced species from the electrodes.
Stauffer, Mark T.; Fox, Justin P. J. Chem. Educ. 2008, 85, 523.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry |
Electrolytic / Galvanic Cells / Potentials
The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class  Jeffrey J. Keaffaber, Ramiro Palma, and Kathryn R. Williams
Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. This article uses a hypothetical tank to house ocean sunfish as a model to show students the calculations and other considerations that are needed when designing a marine aquarium.
Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R. J. Chem. Educ. 2008, 85, 225.
Acids / Bases |
Aqueous Solution Chemistry |
Consumer Chemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry
The Chemistry of Swimming Pool Maintenance  Carl Salter and David L. Langhus
This paper examines the key ideas behind swimming pool chemistry -- the central importance of pH and its effect on chlorine sanitation and calcium carbonate solubility. The paper also reviews the analytical procedures and common practices used to monitor and control pool chemistry or correct problems.
Salter, Carl; Langhus, David L. J. Chem. Educ. 2007, 84, 1124.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
Dyes / Pigments |
pH |
Photochemistry |
Precipitation / Solubility |
Water / Water Chemistry
Equilibrium Constants and Water Activity Revisited  David Keeports
Subtle arguments based upon the use of chemical potentials show that numerical values of solute molar concentrations can be used as good approximate activities in equilibrium calculations for reactions involving dilute solutions.
Keeports, David. J. Chem. Educ. 2006, 83, 1290.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Water / Water Chemistry |
Alcohols
Equilibrium Constants and Water Activity Revisited  E. J. Behrman
In teaching the effects of structure on acid strength, it is useful to compare, inter alia, water with primary alcohols.
Behrman, E. J. J. Chem. Educ. 2006, 83, 1290.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Water / Water Chemistry |
Alcohols
Equilibrium Constants and Water Activity Revisited  E. J. Behrman
In teaching the effects of structure on acid strength, it is useful to compare, inter alia, water with primary alcohols.
Behrman, E. J. J. Chem. Educ. 2006, 83, 1290.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Water / Water Chemistry |
Alcohols
The Great Wakonse Earthquake of 2003: A Short, Problem-Based Introduction to the Titration Concept  Brian P. Coppola, Amy C. Gottfried, Robyn L. Gdula, Alan L. Kiste, and Nathan W. Ockwig
This activity introduces nonscience adult learners to the concept of titration from real-world instructions about earthquake water safety found in a California phone book.
Coppola, Brian P.; Gottfried, Amy C.; Gdula, Robyn L.; Kiste, Alan L.; Ockwig, Nathan W. J. Chem. Educ. 2006, 83, 600.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
Qualitative Analysis |
Titration / Volumetric Analysis |
Water / Water Chemistry
Linking Laboratory Experiences to the Real World: The Extraction of Octylphenoxyacetic Acid from Water  Jorge E. Loyo-Rosales, Alba Torrents, Georgina C. Rosales-Rivera, and Clifford P. Rice
A known quantity of the sodium salt of octylphenoxyacetic acid is dissolved in water, transformed to the acid (insoluble) form, and extracted using dichloromethane. These changes can be followed visually owing to conspicuous changes in solution turbidity.
Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford P. J. Chem. Educ. 2006, 83, 248.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
pH |
Stoichiometry |
Nonmajor Courses |
Water / Water Chemistry
Using Visible Spectrophotometers and pH Measurements To Study Speciation in a Guided-Inquiry Laboratory   William H. Otto, Cynthia K. Larive, Susan L. Mason, Janet B. Robinson, Joseph A. Heppert, and James D. Ellis
A collective-effort, guided-inquiry laboratory investigation was developed for the second-semester general chemistry laboratory for the purpose of increasing student conceptual understanding of equilibrium and speciation phenomena. This investigation required students to employ the chemical indicator phenol red in phosphate buffer solution, computer interfaced pH probes, and visible spectrophotometers. Through a combination of potentiometric and visible absorption measurements, the students determined the pH conditions that alter equilibrium concentrations of multiple species (colored and transparent) in solution.
Otto, William H.; Larive, Cynthia K.; Mason, Susan L.; Robinson, Janet B.; Heppert, Joseph A.; Ellis, James D. J. Chem. Educ. 2005, 82, 1552.
Acids / Bases |
UV-Vis Spectroscopy |
Equilibrium |
pH |
Water / Water Chemistry |
Dyes / Pigments
Equilibrium Constants and Water Activity  David Keeports
General chemistry instructors are faced with a dilemma when introducing the topic of equilibrium constants: These constants are correctly written in terms of activities, yet activity is a complex topic better treated rigorously in a physical chemistry course than superficially in a general chemistry course. Thus, to introduce equilibrium calculations, it is necessary to use approximate forms for equilibrium constants. However, I find that some commonly used textbooks provide incorrect arguments leading to approximate equilibrium constants for aqueous reactions.
Keeports, David. J. Chem. Educ. 2005, 82, 999.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Water / Water Chemistry
Teaching Brønsted-Lowry Acid-Base Theory in a Direct Comprehensive Way  Jamie L. Adcock
Unifying all the Bronsted-Lowry acid-base concepts in a quantitative way.
Adcock, Jamie L. J. Chem. Educ. 2001, 78, 1495.
Acids / Bases |
Equilibrium |
Learning Theories |
Water / Water Chemistry |
Brønsted-Lowry Acids / Bases
Weak vs Strong Acids and Bases: The Football Analogy  Todd P. Silverstein
A football analogy for acids and bases in which acids are compared to quarterbacks, whose job is to get rid of the ball (H+). A strong acid, like an excellent quarterback, delivers the ball effectively; a weak acid, like a poor quarterback, is often left holding the ball. Furthermore, bases may be likened to wide receivers, whose job is to catch and hold onto the ball (H+).
Silverstein, Todd P. J. Chem. Educ. 2000, 77, 849.
Acids / Bases |
Aqueous Solution Chemistry |
Water / Water Chemistry |
Brønsted-Lowry Acids / Bases
The Softening of Hard Water and Complexometric Titrations: An Undergraduate Experiment  Helena Ceretti, Enrique A. Hughes, and Anita Zalts
An experiment in which (i) water hardness is explained and demonstrated; (ii) ion-exchange resin properties are visually demonstrated and then used for softening water; (iii) complexometric titrations are used for evaluating water hardness before and after softening; and (iv) acid-base titration can be used to show that the Ca/Mg ions removed by the ion exchanger are replaced by H ions.
Ceretti, Helena; Hughes, Enrique A.; Zalts, Anita. J. Chem. Educ. 1999, 76, 1420.
Ion Exchange |
Quantitative Analysis |
Titration / Volumetric Analysis |
Water / Water Chemistry |
Acids / Bases
Predicting Acid-Base Titration Curves without Calculations  Dennis W. Barnum
In this paper a qualitative and systematic method for sketching titration curves is presented. Even the more complex cases such as salts or polyprotic acids and bases are treated just as easily as simple monoprotic acids. Having students predict the shape of titration curves from known equilibrium constants helps to focus attention on the general principles without distraction by the mathematics.
Barnum, Dennis W. J. Chem. Educ. 1999, 76, 938.
Acids / Bases |
Quantitative Analysis |
Water / Water Chemistry |
Equilibrium |
Learning Theories |
Titration / Volumetric Analysis |
Chemometrics
Spring Shock!: Impact of Spring Snowmelt on Lakes and Streams  Judith A. Halstead
This activity uses frozen vinegar to demonstrate that what melts first forms a liquid more concentrated in acetic acid than normal vinegar. As melting continues, the concentration of acetic acid decreases and the pH goes up.
Judith A. Halstead. J. Chem. Educ. 1998, 75, 400A.
Acids / Bases |
Water / Water Chemistry
Constant-Current Coulometric Titration of Hydrochloric Acid  James Swim, Edward Earps, Laura M. Reed, and David Paul
In this experiment we have combined the titration of a strong acid with a strong base and the electrolysis of water into one complete laboratory experience.
James Swim, Edward Earps, Laura M. Reed, and David Paul. J. Chem. Educ. 1996, 73, 679.
Titration / Volumetric Analysis |
Acids / Bases |
Water / Water Chemistry |
Electrochemistry |
Oxidation / Reduction
Crystallization of Supersaturated Sodium Acetate and the Temperature Dependence of the Autoionization Constant of Water  Joseph A. Pergler, Ronald O. Ragsdale, and Thomas G. Richmond
A procedure to qualitatively demonstrate the variation of the autoionization constant of water with temperature.
Pergler, Joseph A.; Ragsdale, Ronald O.; Richmond, Thomas G. J. Chem. Educ. 1995, 72, 1027.
Crystals / Crystallography |
Aqueous Solution Chemistry |
Solutions / Solvents |
Acids / Bases |
Precipitation / Solubility |
Water / Water Chemistry
Standard states for water equilibrium (author response).  Campbell, Mark L.; Waite, Boyd A.
For the purposes of comparison only the unconventionally derived Ka values should be used to compare equilibrium constants for other acids to determine relative acid strengths.
Campbell, Mark L.; Waite, Boyd A. J. Chem. Educ. 1992, 69, 256.
Water / Water Chemistry |
Equilibrium |
Brønsted-Lowry Acids / Bases
Standard states for water equilibrium.  Baldwin, W. George; Burchill, C. Eugene.
The authors consider that Ka and Kb values for Bronsted acids and bases in aqueous solution represent one data set describing the properties of solutes in dilute aqueous solution.
Baldwin, W. George; Burchill, C. Eugene. J. Chem. Educ. 1992, 69, 255.
Water / Water Chemistry |
Equilibrium |
Brønsted-Lowry Acids / Bases
Chemical equilibrium: VIII. Precipitates   Gordus, Adon A.
The final article in a series (see previous months this year): This article focuses on ionic precipitates in water and how buffered solutions allow easier calculation of solubilities.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 927.
Acids / Bases |
Equilibrium |
pH |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Water / Water Chemistry
Bromothymol surprise  Maier, Linda L.
Dropping a tablet of Alka Seltzer into a bromothymol blue solution.
Maier, Linda L. J. Chem. Educ. 1990, 67, 963.
Acids / Bases |
Dyes / Pigments |
Aqueous Solution Chemistry |
Water / Water Chemistry
Correct equilibrium constants for water (the authors reply)  Starkey, Ronald; Norman, Jack; Hinitze, Mark
Water and hydronium ion Ka values are special cases.
Starkey, Ronald; Norman, Jack; Hinitze, Mark J. Chem. Educ. 1987, 64, 1068.
Equilibrium |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Acids / Bases |
Thermodynamics
Correct equilibrium constants for water  Baldwin, W. George; Burchill, C. Eugene
Disagreement with the numerical values assigned to equilibrium constants.
Baldwin, W. George; Burchill, C. Eugene J. Chem. Educ. 1987, 64, 1067.
Equilibrium |
Water / Water Chemistry |
Acids / Bases |
Aqueous Solution Chemistry
Red cabbage and the electrolysis of water  Skinner, James F.
The demonstration profiled here has proven effective in bringing together concepts from acid-base chemistry and electrochemistry.
Skinner, James F. J. Chem. Educ. 1981, 58, 1017.
Electrochemistry |
Water / Water Chemistry |
Acids / Bases
Red cabbage and the electrolysis of water  Skinner, James F.
The demonstration profiled here has proven effective in bringing together concepts from acid-base chemistry and electrochemistry.
Skinner, James F. J. Chem. Educ. 1981, 58, 1017.
Electrochemistry |
Water / Water Chemistry |
Acids / Bases
Development of intellectual skills in the laboratory  Ophardt, Charles E.
This first semester laboratory was designed to give instruction and practice in the intellectual skills of application, analysis, synthesis, and in Piaget's formal operations.
Ophardt, Charles E. J. Chem. Educ. 1978, 55, 485.
Learning Theories |
Qualitative Analysis |
Water / Water Chemistry |
Atmospheric Chemistry |
Acids / Bases |
Titration / Volumetric Analysis
Emphasis on acids and bases  J. Chem. Educ. Staff
Considers the acidity or basicity in soils and natural waters; the acid-base balance in body chemistry; acidic and basic foods; the approximate pH values of common fluids; examples of acidic, basic, and neutral drugs; and the commercial preparation of nitric acid.
J. Chem. Educ. Staff J. Chem. Educ. 1977, 54, 626.
Acids / Bases |
Water / Water Chemistry |
Food Science |
Applications of Chemistry |
pH |
Drugs / Pharmaceuticals
Nitric acid in rain water  Gleason, Geoffrey I.
This trace analysis experiment is based on the conversion of nitrate to nitrite using a cadmium amalgam reductor column.
Gleason, Geoffrey I. J. Chem. Educ. 1973, 50, 718.
Acids / Bases |
Water / Water Chemistry |
Atmospheric Chemistry
The hydrated hydronium ion  Clever, H. Lawrence
It is the purpose of this brief review to cite and discuss some of the evidence for the existence of the trihydrated hydronium ion.
Clever, H. Lawrence J. Chem. Educ. 1963, 40, 637.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Acids / Bases |
Brønsted-Lowry Acids / Bases