TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
71 Journal Articles
19 Other Resources
Journal Articles: First 3 results.
Pedagogies:
Greener Alternative to Qualitative Analysis for Cations without H2S and Other Sulfur-Containing Compounds  Indu Tucker Sidhwani and Sushmita Chowdhury
The classic technique for the qualitative analysis of inorganic salts and mixtures relies on highly toxic hydrogen sulfide. Increasing environmental awareness has prompted the development of a green scheme for the detection of cations by spot tests that is simple and fast.
Sidhwani, Indu Tucker; Chowdhury, Sushmita. J. Chem. Educ. 2008, 85, 1099.
Green Chemistry |
Qualitative Analysis |
Separation Science
Developing and Disseminating NOP: An Online, Open-Access, Organic Chemistry Teaching Resource To Integrate Sustainability Concepts in the Laboratory  Johannes Ranke, Müfit Bahadir, Marco Eissen, and Burkhard König
Describes a project that identifies parameters for sustainable practices in organic chemistry laboratories, including the atom economy and energy efficiency of chemical transformations, questions of waste and renewable feedstocks, toxicity and ecotoxicity, and safety measures.
Ranke, Johannes; Bahadir, Müfit; Eissen, Marco; König, Burkhard. J. Chem. Educ. 2008, 85, 1000.
Green Chemistry |
Synthesis |
Toxicology
Determination of the Formula of a Hydrate: A Greener Alternative  Marc A. Klingshirn, Allison F. Wyatt, Robert M. Hanson, and Gary O. Spessard
This article describes how the principles of green chemistry were applied to a first-semester, general chemistry courses, specifically in relation to the determination of the formula of a copper hydrate salt that changes color when dehydrated and is easily rehydrated with steam.
Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O. J. Chem. Educ. 2008, 85, 819.
Gravimetric Analysis |
Green Chemistry |
Solids |
Stoichiometry
View all 71 articles
Other Resources: First 3 results
Molecular Models of Reactants and Products from an Asymmetric Synthesis of a Chiral Carboxylic Acid  William F. Coleman
Our JCE Featured Molecules for this month come from the paper by Thomas E. Smith, David P. Richardson, George A. Truran, Katherine Belecki, and Megumi Onishi (1). The authors describe the use of a chiral auxiliary, 4-benzyl-2-oxazolidinone, in the synthesis of a chiral carboxylic acid. The majority of the molecules used in the experiment, together with several of the pharmaceuticals mentioned in the paper, have been added to our molecule collection. In many instances multiple enantiomeric and diastereomeric forms of the molecules have been included. This experiment could easily be extended to incorporate various aspects of computation for use in an advanced organic or integrated laboratory. Here are some possible exercises using the R and S forms of the 4-benzyl-2-oxazolidinone as the authors point out that both forms are available commercially. Calculation of the optimized structures and energies of the enantiomers at the HF/631-G(d) level using Gaussian03 (2) produces the results shown in Table 1. Evaluation of the vibrational frequencies results in no imaginary frequencies and the 66 real frequencies are identical for the two forms. Examination of the computed IR spectra also shows them to be identical. Additionally, the Raman and NMR spectra can be calculated for the enantiomers and compared to experimental values and spectral patterns. A tool that is becoming increasingly important for assigning absolute configuration is vibrational circular dichroism (VCD). Although the vibrational spectra of an enantiomeric pair are identical, the VCD spectra show opposite signs, as shown in Figure 1. One can imagine a synthesis, using an unknown enantiomer of the chiral auxiliary, followed by calculations of the electronic and vibrational properties of all of the intermediates and the product, and determination of absolute configuration of reactants and products by comparison of experimental and computed VCD spectra. Using a viewer capable of displaying two molecules that can be moved independently, students could more easily visualize the origin of the enantiomeric preference in the reaction between the chelated enolate and allyl iodide.
Green Chemistry
Density of Black Holes  Ed Vitz
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Astrochemistry
Density of Martian Moons  Robert Hetue
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Astrochemistry
View all 19 results