TIGER

Journal Articles: 281 results
A New "Bottom-Up" Framework for Teaching Chemical Bonding  Tami Levy Nahum, Rachel Mamlok-Naaman, Avi Hofstein, and Leeor Kronik
This article presents a general framework for bonding that can be presented at different levels of sophistication depending on the student's level and needs. The pedagogical strategy for teaching this model is a "bottom-up" one, starting with basic principles and ending with specific properties.
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Kronik, Leeor. J. Chem. Educ. 2008, 85, 1680.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Materials Science |
MO Theory |
Noncovalent Interactions
Lanthanum (La) and Actinium (Ac) Should Remain in the d-block  Laurence Lavelle
This paper discusses the reasons and implications of placing lanthanum and actinium in the f-block and lutetium and lawrencium in the d-block.
Lavelle, Laurence. J. Chem. Educ. 2008, 85, 1482.
Atomic Properties / Structure |
Inner Transition Elements |
Periodicity / Periodic Table |
Transition Elements
The Electrochemical Synthesis of Transition-Metal Acetylacetonates  S. R. Long, S. R. Browning, and J. J. Lagowski
The electrochemical synthesis of transition-metal acetylacetonates can assist in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but each student has a personal responsibility for the synthesis and characterization of a specific compound.
Long, S. R.; Browning, S. R.; Lagowski, J. J. J. Chem. Educ. 2008, 85, 1429.
Coordination Compounds |
Electrochemistry |
IR Spectroscopy |
Physical Properties |
Synthesis |
Transition Elements |
UV-Vis Spectroscopy
Data Pooling in a Chemical Kinetics Experiment: The Aquation of a Series of Cobalt(III) Complexes  Richard S. Herrick, Kenneth V. Mills, and Lisa P. Nestor
Describes an experiment that introduces students to integrated rate laws, the search for a mechanism that is consistent with chemical and kinetic data, and the concept of activation barriers and their measurement in a curriculum whose pedagogical philosophy makes the laboratory the center of learning for undergraduates in their first two years of instruction.
Herrick, Richard S.; Mills, Kenneth V.; Nestor, Lisa P. J. Chem. Educ. 2008, 85, 1120.
Coordination Compounds |
Kinetics |
Mechanisms of Reactions |
Rate Law |
UV-Vis Spectroscopy
Prussian Blue: Artists' Pigment and Chemists' Sponge  Mike Ware
The variable composition of Prussian blue tantalized chemists until investigations by X-ray crystallography in the late 20th century explained its many properties and uses.
Ware, Mike. J. Chem. Educ. 2008, 85, 612.
Applications of Chemistry |
Coordination Compounds |
Dyes / Pigments |
Electrochemistry |
Oxidation / Reduction |
Photochemistry |
Toxicology
Diamagnetic Corrections and Pascal's Constants  Gordon A. Bain and John F. Berry
This article presents an explanation for the origin of diamagnetic correction factors, comprehensive tables of diamagnetic constants and their application to calculate diamagnetic susceptibility, and a simple method for estimating the correct order of magnitude for the diamagnetic correction for any given compound.
Bain, Gordon A.; Berry, John F. J. Chem. Educ. 2008, 85, 532.
Laboratory Computing / Interfacing |
Magnetic Properties |
Molecular Properties / Structure |
Physical Properties |
Transition Elements
The Chemical Adventures of Sherlock Holmes: The Serpentine Remains  Ken Shaw
This story is a chemical mystery, set in the context of Sherlock Holmes and Dr. Watson, that emphasizes qualitative analysis, descriptive chemistry, and forensics.
Shaw, Ken. J. Chem. Educ. 2008, 85, 507.
Acids / Bases |
Applications of Chemistry |
Coordination Compounds |
Calorimetry / Thermochemistry |
Forensic Chemistry |
Qualitative Analysis
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes  Aminou Mohamadou and Arnaud Haudrechy
This article presents a simple and progressive method to draw all of the octahedral complexes of coordination units with at least two different monodentate ligands and show their chiral properties.
Mohamadou, Aminou; Haudrechy, Arnaud. J. Chem. Educ. 2008, 85, 436.
Asymmetric Synthesis |
Chirality / Optical Activity |
Coordination Compounds |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry |
Transition Elements
Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?  Jean François LeMaréchal
Uses the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object.
LeMaréchal, Jean François. J. Chem. Educ. 2008, 85, 433.
Chirality / Optical Activity |
Coordination Compounds |
Enantiomers |
Group Theory / Symmetry |
Stereochemistry |
Transition Elements
Preparation and Characterization of Solid Co(II) Pyrimidinolates in a Multifaceted Undergraduate Laboratory Experiment  Norberto Masciocchi, Simona Galli, Angelo Sironi, Gabriella Dal Monte, Elisa Barea, Juan Manuel Salas, and Jorge A. R. Navarro
Presents an integrated set of experiments involving the [Co(4-pyrimidinolate)2(H2O)n] species, including synthesis; analytical characterization by conventional titration and colorimetric methods; thermal, spectroscopic and structural characterization; and advanced analytical techniques (XRF, XRD).
Masciocchi, Norberto; Galli, Simona; Sironi, Angelo; Dal Monte, Gabriella; Barea, Elisa; Salas, Juan Manuel; Navarro, Jorge A. R. J. Chem. Educ. 2008, 85, 422.
Coordination Compounds |
Solid State Chemistry |
Synthesis |
Thermal Analysis |
X-ray Crystallography
A New Colorimetric Assay of Tabletop Sweeteners Using a Modified Biuret Reagent  Christopher J. Fenk, Nathan Kaufman, and Donald G. Gerbig, Jr.
Presents a new, fast and effective colorimetric analysis of aspartame that incorporates a less caustic biuret reagent and visible spectroscopic analysis for selective detection in aqueous solutions using readily available instrumentation.
Fenk, Christopher J.; Kaufman, Nathan; Gerbig, Donald G., Jr. J. Chem. Educ. 2007, 84, 1676.
Consumer Chemistry |
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Food Science |
Qualitative Analysis |
Quantitative Analysis |
UV-Vis Spectroscopy |
Amino Acids
Redox Titration of Ferricyanide to Ferrocyanide with Ascorbic Acid: Illustrating the Nernst Equation and Beer–Lambert Law  Tina H. Huang, Gail Salter, Sarah L. Kahn, and Yvonne M. Gindt
In this simple experiment, which illustrates the Nernst equation and BeerLambert law, students monitor the reduction of ferricyanide ion to ferrocyanide electrochemically and spectrophoto-metrically upon titration with ascorbic acid. The Nernst equation is used to calculate the standard reduction potential of the redox couple at pH 7 and the number of electrons transferred.
Huang, Tina H.; Salter, Gail; Kahn, Sarah L.; Gindt, Yvonne M. J. Chem. Educ. 2007, 84, 1461.
Coordination Compounds |
Electrochemistry |
Potentiometry |
Spectroscopy |
UV-Vis Spectroscopy
Lewis Structure Representation of Free Radicals Similar to ClO  Warren Hirsch and Mark Kobrak
An unconventional Lewis structure is proposed to explain the properties of the free radical ClO and a series of its isoelectronic analogues, particularly trends in the spin density of these species.
Hirsch, Warren; Kobrak, Mark. J. Chem. Educ. 2007, 84, 1360.
Atmospheric Chemistry |
Computational Chemistry |
Covalent Bonding |
Free Radicals |
Lewis Structures |
Molecular Modeling |
MO Theory |
Valence Bond Theory
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Predicting the Stability of Hypervalent Molecules  Tracy A. Mitchell, Debbie Finocchio, and Jeremy Kua
In this exercise, students use concepts in thermochemistry such as bond energy, ionization potentials, and electron affinities to predict the relative stability of two hypervalent molecules (PF5 and PH5) relative to their respective non-hypervalent counterparts.
Mitchell, Tracy A.; Finocchio, Debbie; Kua, Jeremy. J. Chem. Educ. 2007, 84, 629.
Computational Chemistry |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Molecular Modeling |
Calorimetry / Thermochemistry |
Molecular Properties / Structure
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Using Metals To Change the Colors of Natural Dyes  Jennifer E. Mihalick and Kathleen M. Donnelly
Metal salts (mordants) are used to produce different colors in fabrics dyed with tea leaves or marigold flowers. This experiment is especially suitable for nonscience majors and can be used to introduce polymers.
Mihalick, Jennifer E.; Donnelly, Kathleen M. J. Chem. Educ. 2006, 83, 1550.
Applications of Chemistry |
Dyes / Pigments |
Transition Elements
More on the Nature of Resonance  Robert C. Kerber
The author continues to find the use of delocalization preferable to resonance.
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 1291.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Resonance Theory |
Nomenclature / Units / Symbols
More on the Nature of Resonance  William B. Jensen
Supplements a recent article on the interpretation of resonance theory with three additional observationsone historical and two conceptual.
Jensen, William B. J. Chem. Educ. 2006, 83, 1290.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
A Colorful Look at the Chelate Effect  Donald C. Bowman
The relative stabilities of several copper(II) and nickel(II) complexes are visually compared by noting color changes due to ligand exchange reactions. The demonstration illustrates the chelate effectthe increased stability of bi- and tetradentate ligands.
Bowman, Donald C. J. Chem. Educ. 2006, 83, 1158.
Coordination Compounds |
Transition Elements
The Synthesis of Copper(II) Carboxylates Revisited  Kevin Kushner, Robert E. Spangler, Ralph A. Salazar, Jr., and J. J. Lagowski
Describes an electrochemical synthesis of copper(II) carboxylates for use in the general chemistry laboratory course for chemistry majors.
Kushner, Kevin; Spangler, Robert E.; Salazar, Ralph A., Jr.; Lagowski, J. J. J. Chem. Educ. 2006, 83, 1042.
Carboxylic Acids |
Coordination Compounds |
Electrochemistry |
Metals |
Solutions / Solvents |
Transition Elements |
Undergraduate Research |
Synthesis
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
The Discovery and Development of Cisplatin  Rebecca A. Alderden, Matthew D. Hall, and Trevor W. Hambley
Cisplatin is currently one of the most widely used anticancer drugs in the world. The unlikely events surrounding the discovery of its anticancer activity, subsequent introduction into the clinic, and the continuing research into platinum compounds is the subject of this review.
Alderden, Rebecca A.; Hall, Matthew D.; Hambley, Trevor W. J. Chem. Educ. 2006, 83, 728.
Bioinorganic Chemistry |
Coordination Compounds |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Metallic Bonding |
Oxidation State |
Synthesis
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
The Nature of Hydrogen Bonding  Emeric Schultz
Students use toy connecting blocks and Velcro to investigate weak intermolecular interactions, specifically hydrogen bonds.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 400A.
Noncovalent Interactions |
Hydrogen Bonding |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Covalent Bonding |
Molecular Modeling |
Molecular Properties / Structure
Simple and Inexpensive Computer Interface to a Durrum Stopped-Flow Apparatus Tested Using the Iron(III)–Thiocyanate Reaction  Craig M. Hoag
Describes a computer interface between a Durrum model 110 stopped-flow apparatus and a LabPro voltage probe using LoggerPro software from Vernier. This probe and software can be used to measure and record data from most instruments normally connected to an oscilloscope or chart recorder.
Hoag, Craig M. J. Chem. Educ. 2005, 82, 1823.
Instrumental Methods |
Kinetics |
Laboratory Computing / Interfacing |
Coordination Compounds |
UV-Vis Spectroscopy
Are Some Elements More Equal Than Others?  Ronald L. Rich
Presents a new periodic chart with 18 columns but no interruptions of atomic numbers at Lanthanum or Actinum, and no de-emphasis of elements 57-71 or 89-103 by seeming to make footnotes of them. It shows some elements more than once in order to illuminate multiple relationships in chemical behavior.
Rich, Ronald L. J. Chem. Educ. 2005, 82, 1761.
Atomic Properties / Structure |
Descriptive Chemistry |
Inner Transition Elements |
Main-Group Elements |
Nomenclature / Units / Symbols |
Oxidation State |
Periodicity / Periodic Table |
Transition Elements
Trends in Ionization Energy of Transition-Metal Elements  Paul S. Matsumoto
Examines why, as the number of protons increase along a row in the periodic table, the first ionization energies of the transition-metal elements are relatively steady, but that for the main-group elements increases.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 1660.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Transition Elements
Predicting the Atomic Weights of the Trans-Lawrencium Elements: A Novel Application of Dobereiner's Triads  Sami A. Ibrahim
Dobereiner's concept of triads remain useful for predicting the properties of the super-heavy elements (113118) and for providing reasonable estimates of the atomic weights of all 16 trans-lawrencium elements.
Ibrahim, Sami A. J. Chem. Educ. 2005, 82, 1658.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Main-Group Elements |
Transition Elements
A Passive Sampler for Determination of Nitrogen Dioxide in Ambient Air  Dan Xiao, Lianzhi Lin, Hongyan Yuan, Martin M. F. Choi, and Winghong Chan
This article describes the use of a passive sampler for detecting and collecting nitrogen dioxide, NO2, in ambient air. This device is based on microporous PTFE membranes that allow air samples to diffuse through and subsequently react with an absorbing reagent solution. The absorbance value of this reagent is proportional to the NO2 concentration in ambient air. It has been successfully applied to determine the NO2 concentrations in various sampling sites.
Xiao, Dan; Lin, Lianzhi; Yuan, Hongyan; Choi, Martin M. F.; Chan, Winghong. J. Chem. Educ. 2005, 82, 1231.
Calibration |
Membranes |
UV-Vis Spectroscopy |
Amines / Ammonium Compounds |
Coordination Compounds |
Gases |
Laboratory Equipment / Apparatus |
Nonmajor Courses |
Quantitative Analysis
Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number  Derek W. Smith
It is argued that the terms valence, covalence, hypervalence, oxidation state, and coordination number are often confused and misused in the literature. It is recommended that use of the term valence, and its associated terminology, should be restricted to simple molecular main group substances and to some oxoacids and derivatives, but avoided in both main group and transition element coordination chemistry.
Smith, Derek W. J. Chem. Educ. 2005, 82, 1202.
Coordination Compounds |
Covalent Bonding |
Main-Group Elements |
Oxidation State
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
Electronegativity and the Bond Triangle  Terry L. Meek and Leah D. Garner
The dependence of bond type on two parameters, electronegativity difference (??) and average electronegativity (?av), is examined. It is demonstrated that ionic character is governed by the partial charges of the bonded atoms, and metallic character by the HOMOLUMO band gap.
Meek, Terry L.; Garner, Leah D. J. Chem. Educ. 2005, 82, 325.
Atomic Properties / Structure |
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Main-Group Elements
The Meaning of d-Orbital Labels  Guy Ashkenazi
Orbital labels are the angular part of the wave function, expressed in Cartesian coordinates. The mathematical relation between the labels and the shapes of the orbitals is discussed.
Ashkenazi, Guy. J. Chem. Educ. 2005, 82, 323.
Atomic Properties / Structure |
Transition Elements |
Quantum Chemistry
The Formula for Ammonia Monohydrate  Stephen J. Hawkes
The reality of NH4OH was argued in J. Chem. Educ. and elsewhere a decade ago. Further evidence is now available. My colleague Darrah Thomas has calculated the geometry and bond lengths of H5NO using Gaussian. The calculation was done using the D95 basis set and the B3LYP method.
Hawkes, Stephen J. J. Chem. Educ. 2004, 81, 1569.
Covalent Bonding
Demonstrating and Measuring Relative Molar Magnetic Susceptibility Using a Neodymium Magnet  Charles J. Malerich and Patrica K. Ruff
A method for demonstrating and measuring the magnetic attraction between a paramagnetic substance and a neodymium magnet is described and evaluated. The experiment measures the maximum angle that the magnet can deflect a paramagnetic compound from the vertical. The apparatus to make this measurement is easy to set up and is low-cost.
Malerich, Charles J.; Ruff, Patrica K. J. Chem. Educ. 2004, 81, 1155.
Magnetic Properties |
Metals |
Transition Elements |
Computational Chemistry
Exothermic Bond Breaking: A Persistent Misconception  William C. Galley
Surveys taken the past several years at the onset of an introductory physical chemistry course reveal that the vast majority of students believe that bond breaking is exothermic.
Galley, William C. J. Chem. Educ. 2004, 81, 523.
Covalent Bonding |
Calorimetry / Thermochemistry
Teaching Molecular Geometry with the VSEPR Model  Ronald J. Gillespie
The difficulties associated with the usual treatment of the VB and MO theories in connection with molecular geometry in beginning courses are discussed. It is recommended that the VB and MO theories should be presented only after the VSEPR model either in the general chemistry course or in a following course, particularly in the case of the MO theory, which is not really necessary for the first-year course.
Gillespie, Ronald J. J. Chem. Educ. 2004, 81, 298.
Covalent Bonding |
Molecular Properties / Structure |
Main-Group Elements |
Theoretical Chemistry |
VSEPR Theory |
MO Theory
The Place of Zinc, Cadmium, and Mercury in the Periodic Table  William B. Jensen
Explanation for why the zinc group belongs with the main group elements; includes several versions of periodic tables.
Jensen, William B. J. Chem. Educ. 2003, 80, 952.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Descriptive Chemistry |
Atomic Properties / Structure
Writing Electron Dot Structures   Kenneth R. Magnell
Drill with feedback for students learning to write electron dot structures.
Magnell, Kenneth R. J. Chem. Educ. 2003, 80, 711.
Covalent Bonding |
Lewis Structures |
Resonance Theory |
Enrichment / Review Materials
The Molecular Model Game  Stephanie A. Myers
Student teams must draw Lewis structures and build models of various molecules and polyatomic ions; different team members have different responsibilities.
Myers, Stephanie A. J. Chem. Educ. 2003, 80, 423.
Molecular Properties / Structure |
Covalent Bonding |
Lewis Structures |
VSEPR Theory |
Enrichment / Review Materials
Find the Symbols of Elements Using a Letter Matrix Puzzle  V. D. Kelkar
Letter matrix puzzle using chemical symbols.
Kelkar, V. D. J. Chem. Educ. 2003, 80, 411.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
A Three-Dimensional Model for Water  J. L. H. Johnson and S. H. Yalkowsky
Using Molymod spheres and magnets to simulate the structure and properties of water and aqueous systems.
Johnson, J. L. H.; Yalkowsky, S. H. J. Chem. Educ. 2002, 79, 1088.
Aqueous Solution Chemistry |
Covalent Bonding |
Lipids |
Liquids |
Solutions / Solvents |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Simple Measurement of Magnetic Susceptibility with a Small Permanent Magnet and a Top-Loading Electronic Balance  Yoshinori Itami and Kozo Sone
Measuring magnetic susceptibility of solid transition metal salts using a simple, inexpensive, and easy-to-handle device.
Itami, Yoshinori; Sone, Kozo. J. Chem. Educ. 2002, 79, 1002.
Atomic Properties / Structure |
Magnetic Properties |
Transition Elements |
Laboratory Equipment / Apparatus |
Metals
An Evergreen: The Tetrahedral Bond Angle  Marten J. ten Hoor
Summary and analysis of derivations of the tetrahedral bond angle.
ten Hoor, Marten J. J. Chem. Educ. 2002, 79, 956.
Molecular Properties / Structure |
Covalent Bonding
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
The Role of Lewis Structures in Teaching Covalent Bonding  S. R. Logan
Difficulties with the Lewis theory of covalent bonding and upgrading it to the Molecular Orbital theory.
Logan, S. R. J. Chem. Educ. 2001, 78, 1457.
Covalent Bonding |
MO Theory |
Nonmajor Courses |
Learning Theories |
Lewis Structures |
Molecular Properties / Structure
An Investigation of the Value of Using Concept Maps in General Chemistry  Gayle Nicoll, Joseph S. Francisco, and Mary B. Nakhleh
Study of the degree to which students in introductory chemistry classes linked related concepts; comparisons of a class in which concept mapping was used and another in which it was not.
Nicoll, Gayle; Francisco, Joseph S.; Nakhleh, Mary B. J. Chem. Educ. 2001, 78, 1111.
Covalent Bonding |
Learning Theories
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
Periodic Patterns (re J. Chem. Educ. 2000, 77, 1053-1056)  Michael Laing
Unique organization of the periodic table.
Laing, Michael. J. Chem. Educ. 2001, 78, 877.
Descriptive Chemistry |
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements
Periodic Patterns (re J. Chem. Educ. 2000, 77, 1053-1056)  Michael Laing
Unique organization of the periodic table.
Laing, Michael. J. Chem. Educ. 2001, 78, 877.
Descriptive Chemistry |
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements
Metal Complexes of Trifluoropentanedione. An Experiment for the General Chemistry Laboratory  Robert C. Sadoski, David Shipp, and Bill Durham
Investigation of the transition-metal complexes produced by the reactions of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) with 1,1,1-trifluoro-2,4-pentanedione; mass spectroscopy is used to determine the stoichiometry of the reaction products.
Sadoski, Robert C.; Shipp, David; Durham, Bill. J. Chem. Educ. 2001, 78, 665.
Coordination Compounds |
Synthesis |
Mass Spectrometry |
Transition Elements |
Stoichiometry
The Household Chemistry of Cleaning Pennies  Laurence D. Rosenhein
Although it is well known that solutions of vinegar and table salt are effective in removing tarnish from pennies, chemical explanations of this behavior are not included in sources of this "household chemistry" and erroneous explanations have crept into popular literature on this subject; this article provides some relevant empirical information on the system.
Rosenhein, Laurence D. J. Chem. Educ. 2001, 78, 513.
Consumer Chemistry |
Coordination Compounds |
Oxidation / Reduction
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Fast Ionic Migration of Copper Chromate  Adolf Cortel
Among the many demonstrations of ionic migration in an electric field, the ones showing the migration of colored Cu+2 and CrO4-2 ions are popular. The demonstration described here introduces some modifications to allow a fast displacement of these ions.
Cortel, Adolf. J. Chem. Educ. 2001, 78, 207.
Covalent Bonding |
Electrophoresis |
Separation Science
Learning about Atoms, Molecules, and Chemical Bonds: A Case Study of Multiple-Model Use  William R. Robinson
A report from the journal Science Education focusing on the Harrison and Treagust article Learning about Atoms, Molecules, and Chemical Bonds: A Case Study.
Robinson, William R. J. Chem. Educ. 2000, 77, 1110.
Learning Theories |
Kinetic-Molecular Theory |
Molecular Modeling |
Covalent Bonding
A Living Periodic Table  James L. Marshall
A complete "living" periodic table of samples of all the elements through uranium is described. In many instances a sample of an element is accompanied by a direct commercial application. This periodic table is very helpful in enabling the student to gain a hands-on understanding of the true nature of the elements--as opposed to the more usual compilation of mere abstract data.
Marshall, James L. J. Chem. Educ. 2000, 77, 979.
Main-Group Elements |
Periodicity / Periodic Table |
Transition Elements |
Descriptive Chemistry |
Applications of Chemistry
Cubic Unit Cell Construction Kit  Bruce Mattson
This article provides plans for the construction of a student-interactive cubic unit cell model kit. Plans allow for the kit to be constructed on any scale. The kit is used in classroom activities or by students working alone or in small groups to construct the entire family of cubic lattices.
Mattson, Bruce. J. Chem. Educ. 2000, 77, 622.
Coordination Compounds |
Crystals / Crystallography |
Descriptive Chemistry |
Solid State Chemistry |
Molecular Modeling
A Comment on Molecular Geometry   Frank J. Gomba
A method of determining the correct molecular geometry of simple molecules and ions with one central atom is proposed. While the usual method of determining the molecular geometry involves first drawing the Lewis structure, this method can be used without doing so. In fact, the Lewis structure need not be drawn at all. The Lewis structure may be drawn as the final step, with the geometry of the simple molecule or ion already established.
Gomba, Frank J. J. Chem. Educ. 1999, 76, 1732.
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
Letters  
Better treatment of the inner transition elements.
Hawkes, Stephen J. J. Chem. Educ. 1999, 76, 1064.
Periodicity / Periodic Table |
Inner Transition Elements
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
A Way To Predict the Relative Stabilities of Structural Isomers  John M. Lyon
This paper discusses a method to evaluate the relative stabilities of structural isomers of inorganic and organic compounds. The method uses a simple set of rules that can be applied with only a knowledge of the electron configuration of the atoms and the periodic trends in atomic size.
Lyon, John M. J. Chem. Educ. 1999, 76, 364.
Covalent Bonding |
Diastereomers |
Molecular Properties / Structure
The Nernst Equation: Determination of Equilibrium Constants for Complex Ions of Silver  Martin L. Thompson and Laura J. Kateley
The experiment requires a voltmeter capable of recording millivolts (or a good pH meter) and inexpensive chemicals. It allows students to check the validity of the Nernst equation and compare their experimental Kform values to reported ones.
Thompson, Martin L.; Kateley, Laura J. J. Chem. Educ. 1999, 76, 95.
Equilibrium |
Coordination Compounds |
Electrochemistry |
Oxidation / Reduction
The Gravity of the Situation  Damon Diemente
This article presents a few calculations demonstrating that gravitational attraction between atoms is many orders of magnitude weaker than the gravitational attraction between Earth and an atom, and that the gravitational attraction between two ions is many orders of magnitude weaker than the electromagnetic attraction between them.
Diemente, Damon. J. Chem. Educ. 1999, 76, 55.
Atomic Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
An Alternative Framework for Chemical Bonding  William R. Robinson
Recent, qualitative research in science education has uncovered many nave or incorrect ideas about aspects of science commonly held by students and others at all levels. This article discusses how misconceptions can cluster and compound.
Robinson, William R. J. Chem. Educ. 1998, 75, 1074.
Covalent Bonding |
Ionic Bonding
Designing a Self-Contained Qualitative Analysis Test for Transition Metal Ions  Y. S. Serena Tan, B. H. Iain Tan, Hian Kee Lee, Yaw Kai Yan, and T. S. Andy Hor
A challenging self-contained qualitative analysis test for transition metal compounds comprising nine unknowns whereby the unknown solutions can be systematically identified, without relying on external reagents, by inter-mixing the unknown samples. The names of the samples are made known, but their correspondence with the samples is concealed. A representative range of transition metal compounds was selected, together with two complementary main-group compounds. This "9-bottle" test encourages logical deduction and analytical thinking.
Y. S. Serena Tan, B. H. Iain Tan, Hian Kee Lee, Yaw Kai Yan, and T. S. Andy Hor. J. Chem. Educ. 1998, 75, 456.
Qualitative Analysis |
Transition Elements |
Metals
Demonstrations on Paramagnetism with an Electronic Balance  Adolf Cortel
The demonstration shows the paramagnetism of common inorganic compounds by measuring the force with which they are attracted by a magnet over the plate of an electronic balance.
Cortel, Adolf. J. Chem. Educ. 1998, 75, 61.
Magnetic Properties |
Atomic Properties / Structure |
Covalent Bonding
Acid-Base Chemistry of the Aluminum Ion in Aqueous Solution  Edward Koubek
A demonstration of the amphoteric behavior of aluminum is given based on an older report that was given many years ago.
Koubek, Edward. J. Chem. Educ. 1998, 75, 60.
Coordination Compounds |
Equilibrium |
Acids / Bases |
Aqueous Solution Chemistry
Thermochromic Solids  Jeffrey G. Hughes
The preparation of thermochromic compounds and various ways to use them.
Hughes, Jeffrey G. J. Chem. Educ. 1998, 75, 57.
Coordination Compounds |
Phases / Phase Transitions / Diagrams
Complexometric Titrations: Competition of Complexing Agents in the Determination of Water Hardness with EDTA  M. Cecilia Yappert and Donald B. DuPre
The competition of complexing agents for the same metal ion and the formation of colored metal-ion complexes is demonstrated with the use of an overhead projector. This demonstration can be used to emphasize both the relevance of the relative values of formation constants in the complexation of metal cations and the applicability of complexometric titrations in quantitative chemical analysis.
Yappert, M. Cecilia; DuPre, Donald B. J. Chem. Educ. 1997, 74, 1422.
Equilibrium |
Coordination Compounds |
Qualitative Analysis |
Quantitative Analysis |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Water / Water Chemistry |
Metals
What Is a "Heavy Metal"?  Stephen J. Hawkes
Heavy metals are the transition and post-transition metals.
Hawkes, Stephen J. J. Chem. Educ. 1997, 74, 1374.
Metals |
Transition Elements
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
The Inorganic Illustrator: A 3-D Graphical Supplement for Inorganic and Bioinorganic Chemistry Courses Distributed on CD-ROM  Scott L. Childs and Karl S. Hagen
As part of this project we are accumulating a database of representative crystal structures of main group molecules, coordination complexes, organometallic compounds, small metalloproteins, bioinorganic model complexes, clusters, and solid state materials in Chem3D Plus format to be viewed with Chem3D Viewer, which is free software from Cambridge Scientific Computing.
Childs, Scott L.; Hagen, Karl S. J. Chem. Educ. 1996, 73, 917.
Molecular Modeling |
Enrichment / Review Materials |
Bioinorganic Chemistry |
Coordination Compounds |
Organometallics |
Main-Group Elements |
Solid State Chemistry
Ionization Energies, Electronegativity, Polar Bonds, and Partial Charges  James N. Spencer, Richard S. Moog, and Ronald J. Gillespie
Ionization energies obtained experimentally from photoelectron spectroscopy provide a convenient and simple method for obtaining electronegativity values that correlate well with the standard methods of Pauling, Allred, and Rochow.
James N. Spencer, Richard S. Moog, and Ronald J. Gillespie. J. Chem. Educ. 1996, 73, 627.
Covalent Bonding |
Atomic Properties / Structure |
Spectroscopy
Bonding and Molecular Geometry without Orbitals- The Electron Domain Model  Ronald J. Gillespie, James N. Spencer, and Richard S. Moog
An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model.
Ronald J. Gillespie, James N. Spencer, and Richard S. Moog. J. Chem. Educ. 1996, 73, 622.
Atomic Properties / Structure |
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
Why Don't Water and Oil Mix?  Katia Pravia and David F. Maynard
To develop an understanding of the molecular interactions of polar and nonpolar molecules, we have developed two simple and extremely useful overhead projection demonstrations that help students conceptualize the solubility rules.
Katia Pravia and David F. Maynard. J. Chem. Educ. 1996, 73, 497.
Hydrogen Bonding |
Covalent Bonding |
Precipitation / Solubility |
Molecular Properties / Structure
Elemental Anagrams Revisited  Daniell L. Mattern
Twelve elemental anagrams.
Mattern, Daniell L. J. Chem. Educ. 1995, 72, 1092.
Main-Group Elements |
Transition Elements |
Inner Transition Elements |
Enrichment / Review Materials
Infrared Spectroscopy: A Versatile Tool in Practical Chemistry Courses   Volker Wiskam, Wolfgang Fichtner, Volker Kramb, Alexander Nintschew, and Jens Stefan Schneider
Procedure for preparing samples of basic inorganic compounds and analyzing them through IR spectroscopy in freshman chemistry.
Wiscamp, Volker; Fichtner, Wolfgang; Kramb, Volker; Nintschew, Alexander; Schneider, Jens Stefan. J. Chem. Educ. 1995, 72, 952.
IR Spectroscopy |
Synthesis |
Coordination Compounds
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
Demonstrating a Lack of Reactivity Using a Teflon-Coated Pan  Thomas G. Richmond
Demonstration to illustrate a lack of chemical activity using a Teflon-coated pan.
Richmond, Thomas G.; Krause, Paul F. J. Chem. Educ. 1995, 72, 731.
Reactions |
Covalent Bonding
An Introductory Infrared Spectroscopy Experiment   Kenneth R. Hess, Wendy D. Smith, Marcus W. Thomsen, and Claude H. Yoder
An activity designed to introduce IR spectroscopy as a structure-determining technique to introductory chemistry students.
Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H. J. Chem. Educ. 1995, 72, 655.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
The Chemical Bond Studied by IR Spectroscopy in Introductory Chemistry: An Exercise in Cooperative Learning  Janet S. Anderson, David M. Hayes, and T. C. Werner
Activity that enables introductory chemistry students to run their own IR spectra using a FTIR spectrophotometer as part of learning about the dynamical nature of the chemical bond.
Anderson, Janet S.; Hayes, David M.; Werner, T. C. J. Chem. Educ. 1995, 72, 653.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
First-Year Chemistry in the Context of the Periodic Table   Sheila D. Woodgate
Integration of descriptive chemistry into chemistry curricula, particularly inorganic chemistry.
Woodgate, Sheila D. J. Chem. Educ. 1995, 72, 618.
Main-Group Elements |
Transition Elements |
Periodicity / Periodic Table |
Descriptive Chemistry |
Oxidation State |
Acids / Bases
Common Textbook and Teaching Misrepresentations of Lewis Structures   Laila Suidan, Jay K. Badenhoop, Eric D. Glendening, and Frank Weinhold
Clarifying leading Lewis structures using computational software.
Suidan, Laila; Badenhoop, Jay K.; Glendening, Eric D.; Weinhold, Frank. J. Chem. Educ. 1995, 72, 583.
Lewis Structures |
Covalent Bonding |
Quantum Chemistry |
Molecular Properties / Structure
Lewis Structures of Boron Compounds Involving Multiple Bonding  Straub, Darel K.
Considers evidence for multiple bonding in boron compounds and supposed exceptions to the octet rule.
Straub, Darel K. J. Chem. Educ. 1995, 72, 494.
Lewis Structures |
Covalent Bonding
Bond Energy Data Summarized  Kildahl, Nicholas K.
A periodic table that summarizes a variety of bond energy information.
Kildahl, Nicholas K. J. Chem. Educ. 1995, 72, 423.
Periodicity / Periodic Table |
Covalent Bonding |
Ionic Bonding
The Periodic Table CD  Banks, Alton J; Holmes, Jon L.
Description of the Periodic Table CD, containing a database of still images and motion sequences of reactions and uses/applications of each chemical element.
Banks, Alton J; Holmes, Jon L. J. Chem. Educ. 1995, 72, 409.
Main-Group Elements |
Transition Elements |
Periodicity / Periodic Table |
Reactions
A Quantitative van Arkel Diagram  Jensen, William B.
Using van Arkel diagrams to schematically represent relationships between ionic, covalent, and metallic bonds.
Jensen, William B. J. Chem. Educ. 1995, 72, 395.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Elements of and in the Chemical Literature: An Undergraduate Course  Novick, Sabrina Godfrey
Synopsis of a descriptive chemistry course designed to familiarize students with the chemistry of the elements, as well as the wide variety of resources containing information on the properties of the elements and their associated compounds; includes examples of homework and other assessments used in the course.
Novick, Sabrina Godfrey J. Chem. Educ. 1995, 72, 297.
Main-Group Elements |
Transition Elements |
Descriptive Chemistry
Studying Activity Series of Metals: Using Deep-Learning Strategies  Hoon, Tien-Ghun; Goh, Ngoh-Khang; Chia, Lian-Sai
Uses a unit of the activity series of metals to demonstrate the teaching of the interrelationships between chemical concepts by linking new information to previously known material.
Hoon, Tien-Ghun; Goh, Ngoh-Khang; Chia, Lian-Sai J. Chem. Educ. 1995, 72, 51.
Metals |
Periodicity / Periodic Table |
Transition Elements
Periodic Trends for the Entropy of Elements  Thoms, Travis
Graphical representation and explanation for periodic trends in the entropy of elements.
Thoms, Travis J. Chem. Educ. 1995, 72, 16.
Periodicity / Periodic Table |
Thermodynamics |
Main-Group Elements |
Transition Elements
Rare Earth Iron Garnets: Their Synthesis and Magnetic Properties  Geselbracht, Margaret J.; Cappellari, Ann M.; Ellis, Arthur B.; Rzeznik, Maria A.; Johnson, Brian J.
A general synthesis for compositions in the solid solution series YxGd3-xFe5O12 (x = 0, 1, 2, 3) and a simple demonstration that illustrates the differing magnetic properties of these materials.
Geselbracht, Margaret J.; Cappellari, Ann M.; Ellis, Arthur B.; Rzeznik, Maria A.; Johnson, Brian J. J. Chem. Educ. 1994, 71, 696.
Metals |
Transition Elements |
Magnetic Properties |
Synthesis |
Solid State Chemistry
Vanadium Ions as Visible Electron Carriers in a Redox System  Bare, William D.; Resto, Wilfredo
Demonstration using a column to display the four, differently colored, oxidation states of vanadium simultaneously.
Bare, William D.; Resto, Wilfredo J. Chem. Educ. 1994, 71, 692.
Oxidation / Reduction |
Transition Elements |
Metals |
Oxidation State
Transition Metals and the Aufbau Principle  Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D.
Explanation of why the ground state configuration of the neutral transition metals is in most cases 3dn4s2, and why the ground state configuration of the corresponding ions is obtained by preferentially removing the 4s electrons.
Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D. J. Chem. Educ. 1994, 71, 469.
Transition Elements |
Metals |
Atomic Properties / Structure
A Handy Reagent for Testing the Reducing Power of Sugars  Sandell, Arvid
Using the reduction of copper(II) as a semi-quantitative test for reducing sugars.
Sandell, Arvid J. Chem. Educ. 1994, 71, 346.
Carbohydrates |
Oxidation / Reduction |
Coordination Compounds
Collecting and Using the Rare Earths  Solomon, Sally; Lee, Alan
Prices, sources, handling tips, and specific suggestions about how to use the lanthanide elements in the classroom and the laboratory.
Solomon, Sally; Lee, Alan J. Chem. Educ. 1994, 71, 247.
Metals |
Transition Elements |
Physical Properties
Visualization of the Abstract in General Chemistry  Paselk, Richard A.
A series of software programs for beginning chemistry, including a series of modules addressing the fundamental phenomena associated with bonding, the microscopic phenomena underlying commonly observed systems, and a reference periodic table.
Paselk, Richard A. J. Chem. Educ. 1994, 71, 225.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Periodicity / Periodic Table
Classifying Substances by Electrical Character: An Alternative to Classifying by Bond Type  Nelson, P. G.
An alternative classification of substances based on their electrical properties.
Nelson, P. G. J. Chem. Educ. 1994, 71, 24.
Conductivity |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Semiconductors
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
Bonding theory/ The Werner-Jorgensen controversy  Whisnant, David M.
A review of a two-part simulation introducing students to the history of the development of bond theories.
Whisnant, David M. J. Chem. Educ. 1993, 70, 902.
Coordination Compounds
"Qual": From a different viewpoint  Laing, Michael
Author contends that traditional teaching techniques in inorganic chemistry need to be reconsidered.
Laing, Michael J. Chem. Educ. 1993, 70, 666.
Periodicity / Periodic Table |
Metals |
Qualitative Analysis |
Coordination Compounds
Electronegativity and bond type: I. Tripartate separation  Sproul, Gordon D.
As a unifying concept of bonding, electronegativity has been widely applied but gets only a limited treatment in most general chemistry texts.
Sproul, Gordon D. J. Chem. Educ. 1993, 70, 531.
Ionic Bonding |
Covalent Bonding |
Electrochemistry
Transformation of chemistry experiments into real world contexts   Bayer, Richard; Hudson, Bud; Schneider, Jane
Some background on the importance of using lasers to teach concepts in general chemistry and examples of demonstrations under development.
Bayer, Richard; Hudson, Bud; Schneider, Jane J. Chem. Educ. 1993, 70, 323.
Lasers |
Chirality / Optical Activity |
Covalent Bonding
The CoCl2 Thermosiphon   Brown, Justina L.; Battino, Rubin
A novel way to present the temperature dependence of the equilibrium shift using cobalt complexes.
Brown, Justina L.; Battino, Rubin J. Chem. Educ. 1993, 70, 153.
Equilibrium |
Coordination Compounds
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Synthesis, oxidation and UV/IR spectroscopy illustrated: An integrated freshman lab session   Zoller, Uri; Lubezky, Aviva; Danot, Miriam
This paper describes a specially designed, and successfully implemented lab-session for the first-year college general chemistry course.
Zoller, Uri; Lubezky, Aviva; Danot, Miriam J. Chem. Educ. 1991, 68, A274.
IR Spectroscopy |
UV-Vis Spectroscopy |
Coordination Compounds |
Metals
Thermochromic behavior of cobalt(II) halides in nonaqueous solvents and on filter paper   Bare, William D.; Mellon, E. K.
This paper presents two phenomenon of cobalt chemistry that are aesthetically pleasing, relatively safe, and suitable for class experimentation and demonstration.
Bare, William D.; Mellon, E. K. J. Chem. Educ. 1991, 68, 779.
Descriptive Chemistry |
Crystal Field / Ligand Field Theory |
Coordination Compounds
A titrimetric determination using laser-beam scattering for endpoint determination   Brooks, David W.; Lyons, Edward J.
Data from one of four repeated trials of a lecture experiment that determines the stability constant of a silver amine complex.
Brooks, David W.; Lyons, Edward J. J. Chem. Educ. 1991, 68, 155.
Coordination Compounds |
Colloids |
Lasers |
Titration / Volumetric Analysis
Reactivity of nickel  Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri
A series of experiments which lead to observations about the reactivity of nickel. [Debut]
Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri J. Chem. Educ. 1991, 68, 48.
Reactions |
Quantitative Analysis |
Coordination Compounds |
Oxidation State |
Electrochemistry
Fast and slow reactions of chromium compounds  Knox, Kerro
The inertness of ligand substitution by chromium(III) ions is compared with other reactions that do proceed at reasonably fast rates, and an outcome is obtained in which two solutions of identical compositions contain different chromium species of different colors.
Knox, Kerro J. Chem. Educ. 1990, 67, 700.
Coordination Compounds |
Transition Elements
A numerical period table and the f-series chemical elements  Osorio, Hernan von Marttens
A numerical periodic table and its advantages (determining electronic configurations).
Osorio, Hernan von Marttens J. Chem. Educ. 1990, 67, 563.
Periodicity / Periodic Table |
Transition Elements
Magnetic marbles as teaching aids  Hill, John W.
Magnetic marbles are valuable teaching aids for teachers who have steel chalkboards in their classroom.
Hill, John W. J. Chem. Educ. 1990, 67, 320.
Atomic Properties / Structure |
Covalent Bonding |
Ion Exchange
Coordination complexes of cobalt: Inorganic synthesis in the general chemistry laboratory  Williams, Gregory M.; Olmstead, John, III; Breksa, Andrew P., III
An experiment involving synthesis and spectral studies of a series of [Co(NH3)5L] complexes that introduces general chemistry students to inorganic synthesis and allows them to conduct a systematic study on the effect of different ligands on absorption spectra.
Williams, Gregory M.; Olmstead, John, III; Breksa, Andrew P., III J. Chem. Educ. 1989, 66, 1043.
Coordination Compounds |
Synthesis |
Spectroscopy
Transition metal configurations and limitations of the orbital approximation  Scerri, Eric R.
Points out a misconception concerning the "building up" of the transition elements and their first ionization energies that is reinforced by many chemistry texts.
Scerri, Eric R. J. Chem. Educ. 1989, 66, 481.
Transition Elements |
Atomic Properties / Structure
Chemistry according to ROF (Fee, Richard)  Radcliffe, George; Mackenzie, Norma N.
Two reviews on a software package that consists of 68 programs on 17 disks plus an administrative disk geared toward acquainting students with fundamental chemistry content. For instance, acids and bases, significant figures, electron configuration, chemical structures, bonding, phases, and more.
Radcliffe, George; Mackenzie, Norma N. J. Chem. Educ. 1988, 65, A239.
Chemometrics |
Atomic Properties / Structure |
Equilibrium |
Periodicity / Periodic Table |
Periodicity / Periodic Table |
Stoichiometry |
Physical Properties |
Acids / Bases |
Covalent Bonding
Chemical principles for the introductory laboratory, CHM 384 (Johnson, James F.)  Wegner, Carol
A comprehensive review of the title program which overviews basic techniques and concepts presented in introductory laboratory courses. Topics include: titration, equilibrium, Ksp, solubility, Beer's law, coordination complexes and first-order rates of reaction.
Wegner, Carol J. Chem. Educ. 1988, 65, A47.
Acids / Bases |
Titration / Volumetric Analysis |
UV-Vis Spectroscopy |
Equilibrium |
Solutions / Solvents |
Coordination Compounds |
Kinetics
Oxidation states of manganese   Kolb, Doris
This demonstration illustrates oxidation states of manganese.
Kolb, Doris J. Chem. Educ. 1988, 65, 1004.
Oxidation State |
Oxidation / Reduction |
Metals |
Transition Elements
A colorful demonstration to simulate orbital hybridization  Emerson, David W.
A simple, colorful demonstration involving nothing more than several beakers of colored water can speed up student comprehension of hybrid orbitals at the introductory level.
Emerson, David W. J. Chem. Educ. 1988, 65, 454.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Preparation of a simple thermochromic solid  Van Oort, Michiel J. M.
An easy, dramatic, and effective laboratory introduction to solid-solid phase transitions, thermochromism, and color changes associated with changes in ligand coordination suitable for undergraduate students in physical and general chemistry.
Van Oort, Michiel J. M. J. Chem. Educ. 1988, 65, 84.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Coordination Compounds |
Metals |
Thermodynamics
Coordination Chemistry (Basolo, F.; Johnson, R. C.)  Kauffman, George B.
Written for persons with a limited background in chemistry.
Kauffman, George B. J. Chem. Educ. 1987, 64, A191.
Coordination Compounds
The chemical bond  DeKock, Roger L.
Overview of the chemical bond; considers ionic bonds, covalent bonds, Lewis electron dot structures, polar molecules and hydrogen bonds, and bonding in solid-state elements.
DeKock, Roger L. J. Chem. Educ. 1987, 64, 934.
Ionic Bonding |
Covalent Bonding |
Hydrogen Bonding |
Solid State Chemistry |
Lewis Structures |
Molecular Properties / Structure
Werner and Jorgensen: Presenting history with a computer  Whisnant, David M.
85. A computer simulation designed to illustrate the process of science - how theories develop, how change occurs, and how scientists behave.
Whisnant, David M. J. Chem. Educ. 1987, 64, 688.
Molecular Properties / Structure |
Coordination Compounds
Hemoglobinometry: A biochemistry experiment that utilizes the principles of transition metal chemistry  Giuliano, Vincenzo
Colorimetric measurements are used to determine the concentration of hemoglobin in blood and the effect of the effect that the presence of cyanide ions has on the formation of cyanomethemoglobin.
Giuliano, Vincenzo J. Chem. Educ. 1987, 64, 354.
Transition Elements |
Metals |
Medicinal Chemistry |
Spectroscopy
Introduction to overhead projector demonstrations  Kolb, Doris
General suggestions for using the overhead projector and 21 demonstrations. [Debut]
Kolb, Doris J. Chem. Educ. 1987, 64, 348.
Rate Law |
Reactions |
Catalysis |
Equilibrium |
Transition Elements |
Metals |
Oxidation / Reduction |
Acids / Bases
No rabbit ears on water. The structure of the water molecule: What should we tell the students?  Laing, Michael
Analysis of the bonding found in water and how it results in the observed geometry of the water molecule.
Laing, Michael J. Chem. Educ. 1987, 64, 124.
Molecular Properties / Structure |
MO Theory |
Covalent Bonding
A tale of two elements  Nelson, P. G.
Readers are invited to identify elements A and B from the descriptions in this article.
Nelson, P. G. J. Chem. Educ. 1986, 63, 1021.
Oxidation State |
Organometallics |
Coordination Compounds |
Descriptive Chemistry |
Magnetic Properties
Further observations on the cobalt(II)-chloride equilibrium: Effect of changing the chloride ion concentration  Martins, Luis J. A.; da Costa, J. Barbosa
In this article, the authors supplement previous experiments on equilibrium by confirming the effect of changes in chloride ion concentration.
Martins, Luis J. A.; da Costa, J. Barbosa J. Chem. Educ. 1986, 63, 989.
Equilibrium |
Coordination Compounds |
Acids / Bases
Preparation and spectrophotometric analysis of hexaaminenickel(II) chloride: A general chemistry experiment  Wieder, Grace M.
The preparation and ammonia analysis of an amminenickel (II) chloride suggested by a previous author has been modified and extended to include spectrophotometric analysis for nickel. This introduces freshman to a quantitative instrumental technique based on Beer's law.
Wieder, Grace M. J. Chem. Educ. 1986, 63, 988.
Spectroscopy |
Coordination Compounds
Is the theoretical emperor really wearing any clothes?   Sanderson, R. T.
The author asserts that general chemistry material both pushes material of doubtful value and omits material that is useful to many.
Sanderson, R. T. J. Chem. Educ. 1986, 63, 845.
Theoretical Chemistry |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Spectrophotometric titration of a mixture of calcium and magnesium  Fulton, Robert; Ross, Michael; Schroeder, Karl
Because the conditions chosen for the titration are not well suited to visual endpoints, students become aware of the unique advantage of spectrophotometric titrations.
Fulton, Robert; Ross, Michael; Schroeder, Karl J. Chem. Educ. 1986, 63, 721.
UV-Vis Spectroscopy |
Coordination Compounds |
Titration / Volumetric Analysis
A quick test for the highly colored ions of the aluminum-nickel group  Grenda, Stanley C.
This paper intends to present a technique that eliminates errors in the analysis of the nickel subgroup cations.
Grenda, Stanley C. J. Chem. Educ. 1986, 63, 720.
Qualitative Analysis |
Coordination Compounds
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Density gradient columns for chemical displays  Guenther, William B.
An important advantage of these demonstrations of complex chemistry is that students can observe them over a period of time as they grasp concepts of solution equilibria.
Guenther, William B. J. Chem. Educ. 1986, 63, 148.
Acids / Bases |
pH |
Coordination Compounds |
Metals
Competition analogy  Felty, Wayne L.
Using football competition as an analogy for bond polarity.
Felty, Wayne L. J. Chem. Educ. 1985, 62, 869.
Covalent Bonding |
Atomic Properties / Structure
Windowsill kinetics: A spectrophotometric study of the photochromism of mercury dithizonate  Petersen, Richard L.; Harris, Gaylon L.
Mercury dithizonate undergoes a color change from orange to an intense royal blue upon irradiation with visible light.
Petersen, Richard L.; Harris, Gaylon L. J. Chem. Educ. 1985, 62, 802.
Photochemistry |
Spectroscopy |
Kinetics |
Coordination Compounds |
Raman Spectroscopy
The colorful complexes of copper(II)  Earl, Boyd L.
Producing the color changes associated with Cu(H2O)4 2+, CuCl4 2-, and Cu(NH3)4 2+.
Earl, Boyd L. J. Chem. Educ. 1985, 62, 798.
Coordination Compounds |
Crystal Field / Ligand Field Theory
The transuranium elements  Seaborg, Glenn T.
History of the discovery of the transuranium elements.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 463.
Transition Elements |
Metals |
Periodicity / Periodic Table
Qualitative analysis of some transition metals  Kilner, Cary
Students are asked to determine which test or or sequence of tests unambiguously identifies each of several cations (iron, nickel, cobalt, and copper) and to use their results to identify several unknowns.
Kilner, Cary J. Chem. Educ. 1985, 62, 80.
Qualitative Analysis |
Transition Elements |
Metals
EDTA-type chelating agents in everyday consumer products: Some food, cleaning, and photographic applications  Hart, J. Roger
Chelating agents found in mayonnaise and salad dressings; canned legumes; plant foods; detergents and soaps; floor wax removers; hard surface, carpet, bathtub and tile cleaners; and photography.
Hart, J. Roger J. Chem. Educ. 1985, 62, 75.
Consumer Chemistry |
Coordination Compounds |
Applications of Chemistry
Polar Covalence (Sanderson, R. T.)  Sturgeon, George D.

Sturgeon, George D. J. Chem. Educ. 1984, 61, A327.
Covalent Bonding
Chemical bonding simulation  Pankuch, Brian J.
54. Bits and pieces, 21. A computerized simulation that allows students to build molecules from specific atoms using concepts of VSEPR theory and electronegativity.
Pankuch, Brian J. J. Chem. Educ. 1984, 61, 791.
VSEPR Theory |
Covalent Bonding
Cobalt complexes and Le Châtelier  Grant, A. Ward, Jr.
The cobalt complexes are an excellent demonstration to illustrate Le Châtelier's Principle to beginning chemistry students.
Grant, A. Ward, Jr. J. Chem. Educ. 1984, 61, 466.
Coordination Compounds |
Equilibrium
Electronic structure prediction for transition metal ions  Nance, Lewis E.
A useful mnemonic for the electronic structure for M (II) elements.
Nance, Lewis E. J. Chem. Educ. 1984, 61, 339.
Transition Elements |
Metals |
Oxidation State |
Atomic Properties / Structure
Chemical storage of solar energy using an old color change demonstration  Spears, L. Gene, Jr.; Spears, Larry G.
The results of a student research project that could be used as an experiment to illustrate the potential of hydrates salts for solar energy storage.
Spears, L. Gene, Jr.; Spears, Larry G. J. Chem. Educ. 1984, 61, 252.
Photochemistry |
Coordination Compounds |
Solutions / Solvents |
Aqueous Solution Chemistry |
Calorimetry / Thermochemistry
Models to depict hybridization of atomic orbitals  Stubblefield, C. T.
Six models of hybridization: linear, trigonal, tetrahedral, planar, trigonal bipyrimidal, and octahedral.
Stubblefield, C. T. J. Chem. Educ. 1984, 61, 158.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Coordination Compounds
Metal-ligand complexes-a calculation challenge  Ramette, R. W.
The purpose of this paper is to illustrate one of the most important experimental methods for studying complex equilibria and to present synthetic data as a challenge to the many sophisticated calculation procedure that enjoy various degrees of loyalty around the world.
Ramette, R. W. J. Chem. Educ. 1983, 60, 946.
Equilibrium |
Metals |
Electrochemistry |
Oxidation / Reduction |
Coordination Compounds
Electron-dot structures of O2 and NO: Ignored gems from the work of J. W. Linnett  Levy, Jack B.
The presented treatment makes it easier for students to make predictive models with electron-dot structures.
Levy, Jack B. J. Chem. Educ. 1983, 60, 404.
Lewis Structures |
MO Theory |
Covalent Bonding
Inorganic thermochromism: A lecture demonstration of a solid state phase transition  Willett, Roger D.
A description of an activity using thermochromic material is an easy way to demonstrate solid state phase transition.
Willett, Roger D. J. Chem. Educ. 1983, 60, 355.
Phases / Phase Transitions / Diagrams |
Solid State Chemistry |
Coordination Compounds
A needed replacement for the customary description of chemical bonding  Sanderson, R. T.
Description of and encouragement to use an alternative to the covalent / ionic model for chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1982, 59, 376.
Covalent Bonding |
Ionic Bonding
The Nature of the Chemical Bond, Review 2 (Pauling, Linus)  Morlan, Gordon E.
Classic book on the valence-bond theory of chemical bonding.
Morlan, Gordon E. J. Chem. Educ. 1982, 59, 261.
Covalent Bonding
The Nature of the Chemical Bond, Review 1 (Pauling, Linus)  Roe, Robert, Jr.
Classic book on the valence-bond theory of chemical bonding.
Roe, Robert, Jr. J. Chem. Educ. 1982, 59, 260.
Covalent Bonding
Detection of carbon monoxide in tobacco smoke using molybdosilicate  Feinstein, H. I.
This carbon monoxide detector was first developed during WWII: it is simple, rapid, and extremely sensitive.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 633.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Coordination Compounds
Some aspects of coordination chemistry   Mickey, Charles D.
The genesis of modern coordination theory; the Wernerian system; experimental support for Werner's coordination theory; amplification of Werner's theory; the nature of complex ions; formation and nomenclature for complexes, complexes in the environment; chelates in medicine; complexing in natural systems; and industrial application of complexes.
Mickey, Charles D. J. Chem. Educ. 1981, 58, 257.
Coordination Compounds |
Medicinal Chemistry |
Metals
Tetrahedral bonding in CH4. An alternative explanation  Rees, Thomas
Using the VSEPR theory to conduct a thought experiment regarding the bonding and structure of methane.
Rees, Thomas J. Chem. Educ. 1980, 57, 899.
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
An applied exam in coordination chemistry  Pantaleo, Daniel C.
Students draw from a pool of stock chemicals and answer questions based on its formula and observed properties.
Pantaleo, Daniel C. J. Chem. Educ. 1980, 57, 669.
Coordination Compounds |
Nomenclature / Units / Symbols
Bent-bond models using framework molecular models  Sund, Eldon H.; Suggs, Mark W.
Using tubing to represent double and triple bonds.
Sund, Eldon H.; Suggs, Mark W. J. Chem. Educ. 1980, 57, 638.
Molecular Modeling |
Alkenes |
Alkynes |
Covalent Bonding
Cobalt complexes in equilibrium  Ophardt, Charles E.
This equilibrium illustrates the application of LeChatelier's principle to concentration effects.
Ophardt, Charles E. J. Chem. Educ. 1980, 57, 453.
Equilibrium |
Coordination Compounds |
Aqueous Solution Chemistry |
Solutions / Solvents
Bent bonds and multiple bonds  Robinson, Edward A.; Gillespie, Ronald J.
Considers carbon-carbon multiple bonds in terms of the bent bond model first proposed by Pauling in 1931.
Robinson, Edward A.; Gillespie, Ronald J. J. Chem. Educ. 1980, 57, 329.
Covalent Bonding |
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Alkynes
Prospects and retrospects in chemical education  Pauling, Linus
Pauling provides suggestions for what concepts to focus on in an elementary chemistry course.
Pauling, Linus J. Chem. Educ. 1980, 57, 38.
Covalent Bonding |
Descriptive Chemistry |
Molecular Properties / Structure
Physical and chemical properties and bonding of metallic elements  Myers, R. Thomas
137. Common textbook errors concerning the physical and chemical properties, conductivity and bonding of metals.
Myers, R. Thomas J. Chem. Educ. 1979, 56, 712.
Physical Properties |
Metallic Bonding |
Metals |
Covalent Bonding
Electronegativity, bond energy, and chemical reactivity  Myers, R. Thomas
The Pauling electronegativity concept can be used to help rationalize several kinds of chemical reactions.
Myers, R. Thomas J. Chem. Educ. 1979, 56, 711.
Atomic Properties / Structure |
Covalent Bonding |
Reactions
The precipitation of ferrous hydroxide: A lecture demonstration  Lau, O. W.
This demonstration can illustrate such topics as the solubility of ionic compounds, electrode potentials of transition elements and their modification by formation of either an insoluble compound of a complex ion, and mixed valence compounds.
Lau, O. W. J. Chem. Educ. 1979, 56, 474.
Precipitation / Solubility |
Solutions / Solvents |
Aqueous Solution Chemistry |
Transition Elements |
Metals |
Oxidation / Reduction |
Oxidation State
Bond free energies  Amador, Alberto
Provides standard free energies for the formation of common single and multiple bonds.
Amador, Alberto J. Chem. Educ. 1979, 56, 453.
Covalent Bonding |
Thermodynamics
Loosely-bound diatomic molecules  Balfour, W. J.
Over the past decade, careful spectroscopic studies have established the existence of bound rare gas and alkaline earth diatomic molecules.
Balfour, W. J. J. Chem. Educ. 1979, 56, 452.
Covalent Bonding |
Molecular Properties / Structure
Word search puzzle  Claus, Alison S.
This puzzle contains the names of all elements from hydrogen to hahnium (element 105).
Claus, Alison S. J. Chem. Educ. 1979, 56, 44.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements
Magnetic and spectral behavior of Co(py)2X2 complexes. A teaching experiment  Webb, D. L.; Meek, T. L.
The pedagogical merit of this experiment is two-fold: a considerable portion of the syllabus is covered and there is a requirement for students to collaborate and discuss.
Webb, D. L.; Meek, T. L. J. Chem. Educ. 1978, 55, 408.
Spectroscopy |
Magnetic Properties |
Coordination Compounds |
Organometallics
Lecture projectable atomic orbital cross-sections and bonding interactions  Shepherd, Rex E.
Models using small Styrofoam balls and slinky toys improve student understanding of covalent bonds.
Shepherd, Rex E. J. Chem. Educ. 1978, 55, 317.
Atomic Properties / Structure |
Covalent Bonding |
MO Theory |
Molecular Modeling
Synthesis and reactions of a cobalt complex. A project for freshman laboratory  Alexander, John J.; Dorsey, John G.
This lab offers first-year students a rare opportunity for interesting discussions with brighter students, for extending the work involved and for conveying some of the excitement of a developing research problem.
Alexander, John J.; Dorsey, John G. J. Chem. Educ. 1978, 55, 207.
Coordination Compounds |
Diastereomers |
Spectroscopy
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
Synthesis and properties of an optically active complex: A polarimeter experiment for general chemistry  Hunt, Harold R., Jr.
Synthesizing and determining the optical rotation of d-Co(phen)3(ClO4)3.2H2O.
Hunt, Harold R., Jr. J. Chem. Educ. 1977, 54, 710.
Chirality / Optical Activity |
Molecular Properties / Structure |
Stereochemistry |
Synthesis |
Coordination Compounds
Vanadium for high school students  Grant, A. Ward, Jr.
After the instructor performs the reduction of vanadium(V) as a demonstration, students can perform the oxidation of the vanadium(II) back to its original state.
Grant, A. Ward, Jr. J. Chem. Educ. 1977, 54, 500.
Titration / Volumetric Analysis |
Oxidation State |
Oxidation / Reduction |
Metals |
Transition Elements
Questions [and] Answers  Campbell, J. A.
303-308. Six practical, environmental chemistry application questions and their answers. Q303 submitted by Jerry Ray Dias.
Campbell, J. A. J. Chem. Educ. 1977, 54, 369.
Enrichment / Review Materials |
Metals |
Toxicology |
Coordination Compounds |
Membranes |
Aqueous Solution Chemistry |
Atomic Properties / Structure
Lecture demonstration of the various oxidation states of manganese  Arora, C. L.
Showing the colors associated with seven different oxidation states of magnesium and methods for preparing each.
Arora, C. L. J. Chem. Educ. 1977, 54, 302.
Oxidation / Reduction |
Oxidation State |
Transition Elements |
Metals
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
The reactions of ferroin complexes. A color-to-colorless freshman kinetic experiment  Edwards, John O.; Edwards, Kathleen; Palma, Jorge
A group of related reactions that can be easily followed with a colorimeter which show that the mechanism by which a reaction takes place may not be at all obvious from the stoichiometry.
Edwards, John O.; Edwards, Kathleen; Palma, Jorge J. Chem. Educ. 1975, 52, 408.
Kinetic-Molecular Theory |
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Stoichiometry |
Mechanisms of Reactions
Demonstrations for high school chemistry  Castka, Joseph F.
A sequence of demonstrations that may serve to initiate and maintain student interest in the development of acid-base theories and bond strength.
Castka, Joseph F. J. Chem. Educ. 1975, 52, 394.
Acids / Bases |
Covalent Bonding |
Lewis Acids / Bases |
Brønsted-Lowry Acids / Bases
The failings of the law of definite proportions  Suchow, Lawrence
Inorganic solids often violate the law of definite proportions.
Suchow, Lawrence J. Chem. Educ. 1975, 52, 367.
Stoichiometry |
Solids |
Transition Elements |
Metals
A comparison of base strengths using visual and EMF observations  Campbell, J. A.
A series of sequentially added dilute aqueous solutions whose changes provide evidence for different degrees of dissociation of a series and complexes.
Campbell, J. A. J. Chem. Educ. 1975, 52, 185.
Acids / Bases |
Aqueous Solution Chemistry |
Coordination Compounds |
Precipitation / Solubility
Thiocyanato chromium(III) complexes. Separation by paper electrophoresis and estimate of stability constants  Larsen, Erik; Eriksen, J.
Differently charged species of thiocyanato chromium(III) complexes are separated by paper electrophoresis.
Larsen, Erik; Eriksen, J. J. Chem. Educ. 1975, 52, 122.
Separation Science |
Coordination Compounds |
Electrophoresis
Synthesis and spectral study of copper(II) complexes  Potts, Richard A.
The authors propose a series of experiments for general chemistry that are related to one and another.
Potts, Richard A. J. Chem. Educ. 1974, 51, 539.
Coordination Compounds |
Synthesis |
Spectroscopy
Preparation and properties of potassium trioxalatoferrate(III) trihydrate  Aravamudan, G.; Gopalakrishnan, J.; Udupa, M. R.
The authors report on an exercise involving potassium trioxalatoferrate(III) trihydrate as an illustrative exercise in general chemistry laboratory courses.
Aravamudan, G.; Gopalakrishnan, J.; Udupa, M. R. J. Chem. Educ. 1974, 51, 129.
Coordination Compounds |
Synthesis |
Physical Properties
The Cooper structure - A simple model to illustrate the tetrahedral geometry of sp3 bonding  Walker, Ruth A.
A cut out model illustrating the tetrahedral geometry of sp3 bonding.
Walker, Ruth A. J. Chem. Educ. 1973, 50, 703.
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding
A simple demonstration of O2 paramagnetism. A macroscopically observable difference between VB and MO approaches to bonding theory  Saban, G. H.; Moran, T. F.
A simple apparatus to demonstrate the paramagnetic behavior of oxygen.
Saban, G. H.; Moran, T. F. J. Chem. Educ. 1973, 50, 217.
Molecular Properties / Structure |
Magnetic Properties |
MO Theory |
Covalent Bonding
Strength of chemical bonds  Christian, Jerry D.
Demonstrating the strength of chemical bonds by scaling a molecule up to a macroscopic size.
Christian, Jerry D. J. Chem. Educ. 1973, 50, 176.
Covalent Bonding |
Molecular Properties / Structure |
Metallic Bonding
The preparation and analysis of some metal-pyridine complexes. A general chemistry experiment  Kauffman, George B.; Albers, Richard A.; Harlan, Fred L.
A general chemistry experiment in which students synthesize and then characterize some metal-pyridine complexes.
Kauffman, George B.; Albers, Richard A.; Harlan, Fred L. J. Chem. Educ. 1973, 50, 70.
Coordination Compounds |
Synthesis
The reaction of CN- ions with Ni(EDTA)2- ions  Littlejohn, D. G.; Fanning, J. C.
A green Ni(NO3)2 solution changes to blue upon adding EDTA; this changes to a deep violet when a solution of KCN and KOH is added.
Littlejohn, D. G.; Fanning, J. C. J. Chem. Educ. 1972, 49, A267.
Coordination Compounds |
Aqueous Solution Chemistry
The effect of ligands on hydrolysis constants of transition metal ions  Morrow, Jack I.
This procedure examines the effect that ligands in the inner coordination sphere have upon the chemical behavior of transition metal ions.
Morrow, Jack I. J. Chem. Educ. 1972, 49, 748.
Coordination Compounds |
Transition Elements |
Metals |
Crystal Field / Ligand Field Theory |
Aqueous Solution Chemistry
A simple, effective demonstration of magnetic properties of materials  Burke, John A., Jr.
A simple demonstration of diamagnetism that requires only a magnet of a few kilogauss in strength.
Burke, John A., Jr. J. Chem. Educ. 1972, 49, 568.
Magnetic Properties |
Physical Properties |
Metals |
Transition Elements
The paper chromatographic separation of the ions of elements 26 through 30. A laboratory experiment  Skovlin, Dean O.
This experiment describes the simultaneous ascending one dimensional separation of the ions of elements iron through zinc on filter paper using a solvent mixture or hydrochloric acid and 2-butanone.
Skovlin, Dean O. J. Chem. Educ. 1971, 48, 274.
Chromatography |
Descriptive Chemistry |
Transition Elements
Coordination complexes and equilibrium  Shombert, Donald J.
The results of this demonstration are explained in terms of equilibrium, Le Chatelier-Braun's principle, and coordination complex formation.
Shombert, Donald J. J. Chem. Educ. 1970, 47, A784.
Coordination Compounds |
Equilibrium |
Aqueous Solution Chemistry
Demonstration notes: Spontaneous combustion  Johnson, Joseph E.
Modifications or additions to previously published demonstration.
Johnson, Joseph E. J. Chem. Educ. 1970, 47, A439.
Oxidation / Reduction |
Reactions |
Gases |
Transport Properties |
Coordination Compounds
Model to illustrate bonding and symmetry of transition metal complexes  Betteridge, D.
Describes a physical model used to demonstrate the combination of atomic orbitals of the transition metal ion with those on surrounding ligands to give molecular orbitals.
Betteridge, D. J. Chem. Educ. 1970, 47, 824.
Transition Elements |
Metals |
Coordination Compounds |
Molecular Modeling |
Atomic Properties / Structure |
Group Theory / Symmetry
Preparative and ion exchange studies on the cobalt(III)-iminodiacetate system  Weyh, John A.
This experiment involves the preparation of two of the three possible geometrical isomers of the 1:2 iminodiacetato complexes of cobalt(II).
Weyh, John A. J. Chem. Educ. 1970, 47, 715.
Coordination Compounds |
Diastereomers
Solubility and the chemistry of the covalent bond: More on DDT - A substituted alkyl halide  Hill, John W.
Discusses applications of the insolubility of DDT in water and its solubility in covalent fatty tissues.
Hill, John W. J. Chem. Educ. 1970, 47, 634.
Covalent Bonding |
Precipitation / Solubility |
Agricultural Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
Some "real life" applications of solubility: Iron, iron everywhere but not a drop to drink  Brasted, Robert C.
Although Hawaiian pineapples grow in red soils whose iron composition may exceed 20%, they starve for iron because it is in an insoluble form; also considers applications of the insolubility of other transition metals.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 634.
Applications of Chemistry |
Solutions / Solvents |
Aqueous Solution Chemistry |
Precipitation / Solubility |
Plant Chemistry |
Agricultural Chemistry |
Metals |
Transition Elements |
Oxidation State
Some "real life" applications of solubility: Iron, iron everywhere but not a drop to drink  Brasted, Robert C.
Although Hawaiian pineapples grow in red soils whose iron composition may exceed 20%, they starve for iron because it is in an insoluble form; also considers applications of the insolubility of other transition metals.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 634.
Applications of Chemistry |
Solutions / Solvents |
Aqueous Solution Chemistry |
Precipitation / Solubility |
Plant Chemistry |
Agricultural Chemistry |
Metals |
Transition Elements |
Oxidation State
Hydrogen sulfide under any other name still smells. A poisonous story  Brasted, Robert C.
The chemistry of hydrogen sulfide affords an excellent opportunity to integrate descriptive inorganic and coordination chemistry with biochemistry.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 574.
Descriptive Chemistry |
Molecular Properties / Structure |
Coordination Compounds |
Enzymes |
Proteins / Peptides
Role of f electrons in chemical binding  Johnson, O.
Data presented suggests that f electrons, by their ineffective screening of the nuclear charge, exert an indirect effect on the binding strength of actions.
Johnson, O. J. Chem. Educ. 1970, 47, 431.
Atomic Properties / Structure |
Metals |
Transition Elements
Isomerism in transition metal complexes: An experiment for freshman chemistry laboratory  Foust, Richard D., Jr.; Ford, Peter C.
In this experiment students synthesize two isomers, cis- and trans-dichlorobis(ethylenediamine)-cobalt(III) chloride.
Foust, Richard D., Jr.; Ford, Peter C. J. Chem. Educ. 1970, 47, 165.
Molecular Properties / Structure |
Transition Elements |
Metals |
Coordination Compounds |
Diastereomers |
Synthesis
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
Ionic versus covalent bonding  Goldish, Dorothy M.
Ionic sodium chloride dissolves in water but covalent benzyl chloride does not.
Goldish, Dorothy M. J. Chem. Educ. 1969, 46, A497.
Ionic Bonding |
Covalent Bonding |
Aqueous Solution Chemistry |
Precipitation / Solubility
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A.
(1) When is the rule valid that the rate of reaction approximately doubles with a ten-degree temperature rise? - answer by House. (2) On the colors of transition metal complexes. (3) On an electrolysis experiment in which an acid solution is used to minimize the hydrolysis of Cu 2+. - answer by Campbell.
Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A. J. Chem. Educ. 1969, 46, 674.
Rate Law |
Kinetics |
Transition Elements |
Coordination Compounds |
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases
Synthesis and reactions of cobalt complexes: A laboratory experiment  Olson, Gary L.
The experiment described here studies a series of reactions employed in the synthesis of a number of coordination compounds of cobalt(II) and cobalt(III).
Olson, Gary L. J. Chem. Educ. 1969, 46, 508.
Coordination Compounds |
Synthesis
The oxidation states of molybdenum  Stark, J. G.
This experiment involves a titrimetric determination of the oxidation states of molybdenum.
Stark, J. G. J. Chem. Educ. 1969, 46, 505.
Oxidation State |
Titration / Volumetric Analysis |
Transition Elements
Hybrid orbitals in molecular orbital theory  Cohen, Irwin; Del Bene, Janet
Reviews, for the nonspecialist, the basis of hybrid orbitals in terms of molecular orbital theory, to show how the chemical bond is most closely approximated in orbital theory, and to present some new orbital diagrams.
Cohen, Irwin; Del Bene, Janet J. Chem. Educ. 1969, 46, 487.
MO Theory |
Transition Elements
A research approach in the introductory laboratory  Wilson, Lauren R.
Presents an alternative to artificial "experiments" in which known results are merely confirmed in which students synthesize a series of chloro-ammine and chloro-ethylene-diaminecobalt(III) compounds.
Wilson, Lauren R. J. Chem. Educ. 1969, 46, 447.
Undergraduate Research |
Synthesis |
Coordination Compounds |
Qualitative Analysis
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
Complexes in rust spot removal  Saurer, J. M.
KHF2 is used to remove rust stains from cloth.
Saurer, J. M. J. Chem. Educ. 1968, 45, A833.
Coordination Compounds |
Consumer Chemistry
The relative stability of cadmium and cobalt chloride complexes  Butler, S. B.
The presence of complex ions in cadmium chloride solutions is shown by comparison with a sodium chloride solution of equal chlorine content, using a complex cobalt ion as an indicator of the relative chloride ion concentration.
Butler, S. B. J. Chem. Educ. 1968, 45, A691.
Coordination Compounds |
Aqueous Solution Chemistry
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Effect of complexing agents on oxidation potentials  Helsen, Jef
A short note on a simple experiment to demonstrate the effect of complexing agents on the oxidation-reduction properties of redox couples such as Fe3+/Fe2+.
Helsen, Jef J. Chem. Educ. 1968, 45, 518.
Coordination Compounds |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Electrochemistry
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Bond energies in the interpretation of descriptive chemistry  Howald, Reed A.
Most of the discrepancy between bond energies and bond dissociation energies is eliminated by the inclusion of pi bonding effects and using bond energies referred to as hypothetical "valence state" atoms in those cases where spin pairing provides substantial stabilization for the free atom.
Howald, Reed A. J. Chem. Educ. 1968, 45, 163.
Descriptive Chemistry |
Covalent Bonding
Atomic structure. Radioactivity (continued)   Alyea, Hubert N.
Formation of the complex Cu(NH3)4++ as an example of coordinate covalent bonding and hydrogen bonding as evidenced by viscosity.
Alyea, Hubert N. J. Chem. Educ. 1967, 44, A599.
Coordination Compounds |
Covalent Bonding |
Hydrogen Bonding |
Liquids
Anticipating "valences" from electron configurations  Eichinger, Jack W., Jr.
Describes a procedure for predicting "valences" from electron configurations that works well for most metals.
Eichinger, Jack W., Jr. J. Chem. Educ. 1967, 44, 689.
Atomic Properties / Structure |
Metals |
Transition Elements
Some simple models for the double quartet approach  Zipp, Arden P.
Pipe cleaners are used to construct simple models for the double quartet or electronic repulsion theory.
Zipp, Arden P. J. Chem. Educ. 1967, 44, 494.
Molecular Modeling |
Covalent Bonding
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
Models illustrating d orbitals involved in multiple bonding  Barrett, Edward J.
Describes the use of Framework Molecular Orbital Models to illustrate the d orbitals involved in multiple bonding
Barrett, Edward J. J. Chem. Educ. 1967, 44, 146.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding
IV - Isoelectronic systems  Bent, Henry A.
A detailed consideration of the principles of isoelectric systems.
Bent, Henry A. J. Chem. Educ. 1966, 43, 170.
Gases |
Nonmetals |
Covalent Bonding
General chemistry exercise using atomic and molecular orbital models  Walker, Ruth A.
Styrofoam balls and pipecleaners are used to construct models designed to convey an understanding of the three-dimensionality of the electron distribution in the ground state atom and the effect of bonding on this distribution.
Walker, Ruth A. J. Chem. Educ. 1965, 42, 672.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
III - Bond energies  Benson, Sidney W.
Examines bond dissociation energies , methods for measuring such energies, some representative values of such energies, structural aspects of bond dissociation energies, and bond energies in ionized species.
Benson, Sidney W. J. Chem. Educ. 1965, 42, 502.
Covalent Bonding
Notes on experiments for introductory college chemistry  
A brief set of notes regarding the complex salt [Co(NH3)5Cl]Cl2, the Guoy balance, Avogadro's number, and the stoichiometry of a mixture.
J. Chem. Educ. 1965, 42, 495.
Coordination Compounds |
Magnetic Properties |
Stoichiometry |
Solutions / Solvents
Composition of metal ammine ions  Slabaugh, W. H.
The number of ligands associated with the central metallic ion is measured titrimetrically, with photometric and potentiometric endpoints, for Cu(NH3)4 2+ and Ag(NH3)2 +.
Slabaugh, W. H. J. Chem. Educ. 1965, 42, 470.
Coordination Compounds
Experiments on metal amine salts  Haight, G. P., Jr.
Tetrammine monaquo copper(II) sulfate is prepared and studied qualitatively and quantitatively.
Haight, G. P., Jr. J. Chem. Educ. 1965, 42, 468.
Metals |
Covalent Bonding |
Hydrogen Bonding |
Qualitative Analysis |
Quantitative Analysis
Experimental approach to stoichiometry. In first-year chemistry at Northwestern  King, L. Carroll; Cooper, Milton
Presents five experiments in which students are given a minimal set of directions and a simply stated objective.
King, L. Carroll; Cooper, Milton J. Chem. Educ. 1965, 42, 464.
Stoichiometry |
Coordination Compounds |
Undergraduate Research |
Aqueous Solution Chemistry |
Solutions / Solvents |
Precipitation / Solubility |
Titration / Volumetric Analysis
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
The oxygen coordinations of lithium  Donnay, Gabrielle; Gryder, J. W.
The prevalent notion that lithium has only one coordination number with oxygen calls for revision - both tetrahedral and octahedral coordinations do occur.
Donnay, Gabrielle; Gryder, J. W. J. Chem. Educ. 1965, 42, 223.
Coordination Compounds
Simplified d orbital models assist in teaching coordination concepts  Nicholson, Douglas G.
Presents a three-dimensional model, containing representatives of all lobes of the five d orbitals, prepared for each of the tetrahedral, square planar, and octahedral coordination configurations.
Nicholson, Douglas G. J. Chem. Educ. 1965, 42, 148.
Atomic Properties / Structure |
Coordination Compounds
Concerning equilibrium, free energy changes, Le Châtelier's principle II  Eberhardt, William H.
This demonstration involves a reversible, temperature-based transformation from blue tetrahedrally coordinated Co2+ to pink sixfold coordinated Co2+.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A591.
Equilibrium |
Thermodynamics |
Aqueous Solution Chemistry |
Coordination Compounds
I - Ligand field theory  Cotton, F. Albert
Examines the causes and consequences of inner orbital splittings, stereochemical consequences, and the visible spectra of transition metal compounds. [Debut]
Cotton, F. Albert J. Chem. Educ. 1964, 41, 466.
Crystal Field / Ligand Field Theory |
Coordination Compounds |
Transition Elements
An atomic and molecular orbital models kit  Stone, A. Harris; Siegelman, Irwin
The models presented here allows one to see the overlap that constitutes covalent bonds.
Stone, A. Harris; Siegelman, Irwin J. Chem. Educ. 1964, 41, 395.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Crystal field splitting diagrams  Companion, A. L.; Komarynsky, M. A.
Presents a method for determining crystal field splitting patterns within the ionic model without the use of formal group theory.
Companion, A. L.; Komarynsky, M. A. J. Chem. Educ. 1964, 41, 257.
Crystal Field / Ligand Field Theory |
Transition Elements |
Group Theory / Symmetry
The chemistry of the noble gases  Hyman, Herbert H.
Summarizes the chemistry of the noble gases and their bond-forming abilities.
Hyman, Herbert H. J. Chem. Educ. 1964, 41, 174.
Gases |
Main-Group Elements |
Covalent Bonding
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Demonstration of some properties of Prussian blue  Kohn, M.
Provides suggestions for student research based on an earlier article published in the Journal.
Kohn, M. J. Chem. Educ. 1963, 40, A135.
Undergraduate Research |
Dyes / Pigments |
Coordination Compounds |
Acids / Bases
A classical electrostatic view of chemical forces  Jaffe, H. H.
This paper reviews the different types of forces involved in the formation of chemical compounds, solids and liquids.
Jaffe, H. H. J. Chem. Educ. 1963, 40, 649.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Noncovalent Interactions
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Preparation and analysis of a complex compound  Sebera, Donald K.
A cobalt/ammonia complex is prepared and analyzed in a freshman chemistry laboratory.
Sebera, Donald K. J. Chem. Educ. 1963, 40, 476.
Synthesis |
Coordination Compounds |
Transition Elements
Chemical bonding and the geometry of molecules (Ryschkewitsch, George E.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1963, 40, 441.
Molecular Properties / Structure |
Covalent Bonding
The lighter lanthanides: A laboratory experiment in rare earth chemistry  Kauffman, George B.; Takahashi, Lloyd T.; Vickery, R. C.
Presents a laboratory experiment designed to illustrate the separation and properties of the rare earths.
Kauffman, George B.; Takahashi, Lloyd T.; Vickery, R. C. J. Chem. Educ. 1963, 40, 433.
Transition Elements |
Separation Science
Relationship of exothermicities of compounds to chemical bonding  Siegel, Bernard
The sign and magnitude of the standard heat of formation of a chemical compound is often used incorrectly to characterize its relative stability compared to other compounds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 308.
Calorimetry / Thermochemistry |
Covalent Bonding
The valence-shell electron-pair repulsion (VSEPR) theory of directed valency  Gillespie, R. J.
Presents the valence-shell electron-pair repulsion (VSEPR) theory of directed valency and its use to determine molecular shapes, bond angles, and bond lengths.
Gillespie, R. J. J. Chem. Educ. 1963, 40, 295.
VSEPR Theory |
Molecular Properties / Structure |
Covalent Bonding
Intrinsic bond energies  Siegel, S.; Siegel, B.
Examines intrinsic bond energies drawn from spectroscopic data and focusses on beryllium hydride as an example.
Siegel, S.; Siegel, B. J. Chem. Educ. 1963, 40, 143.
Covalent Bonding |
Molecular Properties / Structure
Non-existent compounds  Dasent, W. E.
The purpose of this review is to examine compounds that do not violate the rules of valence but which are nevertheless characterized by a high degree of instability, and to consider why these structures are unstable or non-existent.
Dasent, W. E. J. Chem. Educ. 1963, 40, 130.
Molecular Properties / Structure |
Covalent Bonding
Letters to the editor  Cockburn, B. L.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Cockburn, B. L. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Letters to the editor  Snatzke, G.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Snatzke, G. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Acids, Bases, and the Chemistry of the Covalent Bond (VanderWerf, Calvin A.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1962, 39, 273.
Acids / Bases |
Covalent Bonding
Demonstrations of simple bonding using magnets  Baker, Wilbur L.
Demonstrates a variety of bonding using iron washers, magnets, and steel balls.
Baker, Wilbur L. J. Chem. Educ. 1962, 39, 131.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Models illustrating types of orbitals and bonding  Baker, Wilbur L.
A short note on a model of ethylene that clarifies the nature of bonding in the molecule.
Baker, Wilbur L. J. Chem. Educ. 1961, 38, 606.
Molecular Modeling |
Alkenes |
Covalent Bonding
Coordination chemistry in general chemistry texts  Clark, Roy W.; Selbin, Joel
Presents the results of a survey of 36 college general chemistry texts with respect to the degree to which they examine the chemistry of coordination compounds.
Clark, Roy W.; Selbin, Joel J. Chem. Educ. 1961, 38, 466.
Coordination Compounds
Vibrating molecular models: Frequency shifts in strained ring double bonds  Colthup, Norman B.
Describes the study of the general effect of double bond-single bond interaction using vibrating molecular models.
Colthup, Norman B. J. Chem. Educ. 1961, 38, 394.
Molecular Modeling |
Covalent Bonding
The equilibria of complex formation  Banks, James E.
Despite the present recognition of the stepwise formation of complexes in solution, many textbooks continue to treat it as a one-step process, presumably to preserve a reasonable simplicity in the mathematical computation of concentrations.
Banks, James E. J. Chem. Educ. 1961, 38, 391.
Equilibrium |
Coordination Compounds |
Aqueous Solution Chemistry
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
The separation of rare earths: A project for high school chemistry students  Powell, J. E.; Spedding, F. H.; James, D. B.
The separation of rare earths on an ion-exchange column is a very interesting and dramatic experiment to perform, since it represents the solution of one of the most formidable chemical separation problems confronting the inorganic chemist.
Powell, J. E.; Spedding, F. H.; James, D. B. J. Chem. Educ. 1960, 37, 629.
Metals |
Transition Elements |
Separation Science |
Ion Exchange
Letters (the author replies)  Thompson, H. Bradford
The author acknowledges minor errors in an earlier published article.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 438.
Atomic Properties / Structure |
Covalent Bonding
Letters  Cohen, Irwin
Points out minor errors in an earlier published article.
Cohen, Irwin J. Chem. Educ. 1960, 37, 438.
Atomic Properties / Structure |
Covalent Bonding
Separating Nd from Pr: A laboratory experiment in ion exchange chromatography  Kauffman, George B.; Blank, Jerome S.
Presents a procedure for the separation of neodymium from praseodymium that in principle is applicable to all of the lanthanides.
Kauffman, George B.; Blank, Jerome S. J. Chem. Educ. 1960, 37, 156.
Separation Science |
Ion Exchange |
Transition Elements
Dynamic projector display for atomic orbitals and the covalent bond  Thompson, H. Bradford
An overhead projector is used to display the combination of simple atomic orbitals to form hybrid and molecular orbitals.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 118.
Atomic Properties / Structure |
Covalent Bonding
Molecular models: A general chemistry exercise  Pierce, James B.
Students are provided a list of bond angles, covalent radii, and van der Waals radii, and sufficient polystyrene spheres, and then asked to construct models of molecules and ions.
Pierce, James B. J. Chem. Educ. 1959, 36, 595.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
More mnemonics  Clark, Louis W.
Provides mnemonic devices for memorizing the transition elements in periods four, five, and six.
Clark, Louis W. J. Chem. Educ. 1959, 36, 57.
Transition Elements |
Periodicity / Periodic Table
A schematic representation of valence  Sanderson, R. T.
This paper describes a new chart representing the valence structure of atoms; by studying this chart, with the help of a few simple rules, students of elementary chemistry can acquire a useful understanding of chemical combination.
Sanderson, R. T. J. Chem. Educ. 1958, 35, 541.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Enrichment / Review Materials |
Transition Elements |
Metals |
Nonmetals
Models of metal coordination compounds  Myers, R. Thomas
Suggestions for modifying traditional molecular model kits to illustrate common types of coordination compounds.
Myers, R. Thomas J. Chem. Educ. 1958, 35, 152.
Metals |
Coordination Compounds |
Molecular Modeling
Inorganic coordination compounds in general chemistry  Kirschner, Stanley
Argues that coordination chemistry is an important part of general chemistry and identifies several places in the general chemistry course where the topic of coordination compounds can be conveniently presented.
Kirschner, Stanley J. Chem. Educ. 1958, 35, 139.
Coordination Compounds
Textbook errors: XV. Miscellanea  Mysels, Karol J.
Textbooks errors considered include the solubility of acetates, the effect of light on reactions, tetrahedral carbon, the production of aluminum, and fumaric acid.
Mysels, Karol J. J. Chem. Educ. 1958, 35, 32.
Photochemistry |
Covalent Bonding
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Some aspects of organic molecules and their behavior. I. Electronegativity  Reinmuth, Otto
Reviews the concept of electronegativity as a means of helping introductory students understand aspects of organic molecules and their behavior.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 272.
Molecular Properties / Structure |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Covalent Bonding
Lone pair electrons  Fowles, Gerald W. A.
The lone pair electrons, whether in simple or hybrid orbitals, have profound effects on the properties of the molecule; these effects may be discussed as bond angles, dipole moments, bond energies and lengths, and coordination and hydrogen bonding.
Fowles, Gerald W. A. J. Chem. Educ. 1957, 34, 187.
Atomic Properties / Structure |
Covalent Bonding |
Coordination Compounds |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
A chart of chemical compounds based on electronegativities  Yeh, Ping-Yuan
This short note presents a chart of chemical compounds based on the relative electronegativities of the elements.
Yeh, Ping-Yuan J. Chem. Educ. 1956, 33, 134.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory
The evolution of valence theory and bond symbolism  Mackle, Henry
Traces the historic evolution of valence theory and bond symbolism, including numerical aspects of chemical bonding, the mechanism of chemical bonding and its origins, chemical bonding in organic compounds, stereochemical aspects of chemical bonding, residual valence of unsaturated compounds, and electronic theories of valence.
Mackle, Henry J. Chem. Educ. 1954, 31, 618.
Covalent Bonding
An unconventional representation of multiple bonds  Gillis, Richard G.; Nelson, Peter F.
There are several advantages to differentiating between sigma and pi electrons in representing multiple bonds.
Gillis, Richard G.; Nelson, Peter F. J. Chem. Educ. 1954, 31, 546.
Covalent Bonding
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases
Chemistry of the covalent bond: The first-year course at Brown  Clapp, Leallyn B.
Provides an outline of the first-year chemistry course at Brown University, "The Chemistry of the Covalent Bond."
Clapp, Leallyn B. J. Chem. Educ. 1953, 30, 530.
Covalent Bonding
Letters  Ferreira, Ricardo Carvalho
The author points out earlier work associated with a recent Journal article dealing with the periodic table and the transition elements.
Ferreira, Ricardo Carvalho J. Chem. Educ. 1952, 29, 372.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Transition Elements
The periodic table: The 6d-5f mixed transition group  Coryell, Charles D.
With relatively few modifications, the Bohr-type periodic table presented by Glocker and Popov can be made to reflect more instructively the rather complex relationships obtained in the neighborhood of the 4f or gadolinium transition group and, more importantly, in the 6d-5f sequence extending from actinium through the region of uranium and the synthetic earths to element 103.
Coryell, Charles D. J. Chem. Educ. 1952, 29, 62.
Periodicity / Periodic Table |
Transition Elements |
Atomic Properties / Structure
A temperature-equilibrium demonstration  Brown, John A.
This demonstration makes use of the colored cobaltous complexes in a mixed solvent to show the dependence of some equilibria on temperature.
Brown, John A. J. Chem. Educ. 1951, 28, 640.
Equilibrium |
Calorimetry / Thermochemistry |
Thermodynamics |
Coordination Compounds
The lanthanide contraction as a teaching aid  Keller, R N.
This paper presents a modified form of the atomic volume curve that illustrates graphically the lanthanide contraction; a number of chemical consequences of this effect are also discussed.
Keller, R N. J. Chem. Educ. 1951, 28, 312.
Transition Elements |
Periodicity / Periodic Table
Valency and the periodic table  Glockler, George; Popov, Alexander I.
Presents a modification of the Bohr-Thomsen-Akhumov periodic table stressing patterns to found among the rare earth elements.
Glockler, George; Popov, Alexander I. J. Chem. Educ. 1951, 28, 212.
Periodicity / Periodic Table |
Oxidation State |
Transition Elements |
Atomic Properties / Structure