TIGER

Journal Articles: 92 results
Determining the Solubility Product of Fe(OH)3: An Equilibrium Study with Environmental Significance  Michelle Meighan, Joseph MacNeil, and Renee Falconer
This study explores the environmental impact of acidic mine drainage by investigating the relationship between pH and the aqueous solubility of heavy metals. Students precipitate Fe(OH)3 from acidic FeCl3 and NaOH and use the concentrations of ferric and hydroxide ionsdetermined through pH and flame spectroscopyto calculate the Ksp of Fe(OH)3.
Meighan, Michelle; MacNeil, Joseph; Falconer, Renee. J. Chem. Educ. 2008, 85, 254.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Precipitation / Solubility |
Spectroscopy
A Simplified Model To Predict the Effect of Increasing Atmospheric CO2 on Carbonate Chemistry in the Ocean  Brian J. Bozlee, Maria Janebo, and Ginger Jahn
The chemistry of dissolved inorganic carbon in seawater is reviewed and used to predict the potential effect of rising levels of carbon dioxide in the atmosphere. It is found that calcium carbonate may become unsaturated in cold surface seawater by the year 2100, resulting in the destruction of calcifying organisms such as coral.
Bozlee, Brian J.; Janebo, Maria; Jahn, Ginger. J. Chem. Educ. 2008, 85, 213.
Applications of Chemistry |
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Equilibrium |
Green Chemistry |
Water / Water Chemistry
Experimental Determination of Ultraviolet Radiation Protection of Common Materials  Susana C. A. Tavares, Joaquim C. G. Esteves de Silva, and João Paiva
The oxidation of iodide is used as an indicator for the degree of exposure to UV radiation and to investigate the protection given by a simulation of ozone using plexiglass plates, sunscreen lotions, cotton cloth with different colors, and aqueous solutions with different concentrations of natural organic matter.
Tavares, Susana C. A.; Esteves de Silva, Joaquim C. G.; Paiva, João. J. Chem. Educ. 2007, 84, 1963.
Atmospheric Chemistry |
Consumer Chemistry |
UV-Vis Spectroscopy
New Analytical Method for the Determination of Detergent Concentration in Water by Fabric Dyeing  Set Seng, Masakazu Kita, and Reiko Sugihara
This article describes a high school classroom activity in which an acrylic fabric is used as the extraction medium in the analysis of detergent concentration rather than more harmful organic solvents. An handmade reflection photometer, assembled with inexpensive materials such as LED, PVC tube, and CdS sensor, is used to determine the detergent concentration.
Seng, Set; Kita, Masakazu; Sugihara, Reiko. J. Chem. Educ. 2007, 84, 1803.
Aqueous Solution Chemistry |
Consumer Chemistry |
Dyes / Pigments |
Laboratory Equipment / Apparatus |
Quantitative Analysis |
Solutions / Solvents |
Water / Water Chemistry
"Holes" in Student Understanding: Addressing Prevalent Misconceptions Regarding Atmospheric Environmental Chemistry  Sara C. Kerr and Kenneth A. Walz
This study evaluated the misconception that global warming is caused by holes in the ozone layer, other ideas surrounding atmospheric chemistry that are responsible for the entanglement of the greenhouse effect and ozone depletion in students' conceptual frameworks, and the effectiveness of computer-based online data-analysis exercises to address these shortcomings.
Kerr, Sara C.; Walz, Kenneth A. J. Chem. Educ. 2007, 84, 1693.
Atmospheric Chemistry |
Student-Centered Learning
Geographical Information Systems (GIS) Mapping of Environmental Samples across College Campuses  Kathleen L. Purvis-Roberts, Harriet P. Moeur, and Andrew Zanella
In this laboratory experiment, students take environmental samples (concentrations of nitrogen dioxide) and geospatial coordinates with a global position systems unit at various locations around campus, map their data on a geo-referenced map with geographical information systems software, and compare their results to those observed by governmental agencies.
Purvis-Roberts, Kathleen L.; Moeur, Harriet P.; Zanella, Andrew. J. Chem. Educ. 2007, 84, 1691.
Applications of Chemistry |
Atmospheric Chemistry |
Gases |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy
A Simple Calorimetric Experiment That Highlights Aspects of Global Heat Retention and Global Warming  Joel D. Burley and Harold S. Johnston
In this laboratory experiment, general chemistry students verify that heat is consumed in the melting of ice, with no increase in temperature until all the ice has melted. The fundamental calorimetric principles demonstrated by the lab results are then developed to help students better assess and understand the experimental evidence associated with global warming.
Burley, Joel D.; Johnston, Harold S. J. Chem. Educ. 2007, 84, 1686.
Atmospheric Chemistry |
Calorimetry / Thermochemistry
Response to "Keeping Our Cool"  Roy W. Clark
General chemistry teachers should teach general chemistry. They should teach neither the appreciation of the wonders of modern science, nor should they teach the evil consequences of modern science.
Clark, Roy W. J. Chem. Educ. 2007, 84, 232.
Atmospheric Chemistry
The Great Wakonse Earthquake of 2003: A Short, Problem-Based Introduction to the Titration Concept  Brian P. Coppola, Amy C. Gottfried, Robyn L. Gdula, Alan L. Kiste, and Nathan W. Ockwig
This activity introduces nonscience adult learners to the concept of titration from real-world instructions about earthquake water safety found in a California phone book.
Coppola, Brian P.; Gottfried, Amy C.; Gdula, Robyn L.; Kiste, Alan L.; Ockwig, Nathan W. J. Chem. Educ. 2006, 83, 600.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
Qualitative Analysis |
Titration / Volumetric Analysis |
Water / Water Chemistry
An Environmentally Focused General Chemistry Laboratory  Morgan Mihok, Joseph T. Keiser, Jacqueline M. Bortiatynski, and Thomas E. Mallouk
A one-semester laboratory has been developed in which principles of general chemistry (aqueous acidbase equilibria, kinetics, thermodynamics, chromatographic separations, spectroscopy) are presented in the context of environmental aquatic chemistry.
Mihok, Morgan; Keiser, Joseph T.; Bortiatynski, Jacqueline M.; Mallouk, Thomas E. J. Chem. Educ. 2006, 83, 250.
Acids / Bases |
Chromatography |
Aqueous Solution Chemistry |
Ion Exchange |
Kinetics |
Nonmajor Courses |
Spectroscopy |
UV-Vis Spectroscopy
Linking Laboratory Experiences to the Real World: The Extraction of Octylphenoxyacetic Acid from Water  Jorge E. Loyo-Rosales, Alba Torrents, Georgina C. Rosales-Rivera, and Clifford P. Rice
A known quantity of the sodium salt of octylphenoxyacetic acid is dissolved in water, transformed to the acid (insoluble) form, and extracted using dichloromethane. These changes can be followed visually owing to conspicuous changes in solution turbidity.
Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford P. J. Chem. Educ. 2006, 83, 248.
Acids / Bases |
Applications of Chemistry |
Aqueous Solution Chemistry |
pH |
Stoichiometry |
Nonmajor Courses |
Water / Water Chemistry
Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 7: Microscale Production of Ozone  Jorge G. Ibanez, Rodrigo Mayen-Mondragon, M. T. Moran-Moran, Alejandro Alatorre-Ordaz, Bruce Mattson, and Scot Eskestrand
Ozone, a powerful oxidizing and disinfecting agent, is produced electrochemically in the undergraduate laboratory with simple equipment and under very mild conditions. Tests are given to characterize it, to observe its action in simulated environmental applications, and to measure its rate of production.
Ibanez, Jorge G.; Mayen-Mondragon, Rodrigo; Moran-Moran, M. T.; Alatorre-Ordaz, Alejandro; Mattson, Bruce; Eskestrand, Scot. J. Chem. Educ. 2005, 82, 1546.
Aqueous Solution Chemistry |
Descriptive Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Microscale Lab |
Oxidation / Reduction |
Reactions
Sedimentation Time Measurements of Soil Particles by Light Scattering and Determination of Chromium, Lead, and Iron in Soil Samples via ICP  Patricia Metthe Todebush and Franz M. Geiger
In this two-part general chemistry laboratory activity, students study soil samples from home and from campus. In part one, the samples are placed in water and the suspended colloid fraction is separated using filtration, followed by a determination of colloid sedimentation rates via light scattering. In part two, the solid phase of the soil samples is dissolved in acid and analyzed for chromium, lead, and iron using an inductively coupled plasma spectrometer. The experiment can be expanded to include arsenic. Through these experiments students can draw conclusions about the physical and chemical behavior of solid components in soil, paying particular attention to their propensity for transporting and chemically transforming pollutants in the environment.
Todebush, Patricia Metthe; Geiger, Franz M. J. Chem. Educ. 2005, 82, 1542.
Colloids |
Geochemistry |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Solids |
Surface Science |
Metals
Greenhouse Gases and Non-gray Behavior  J. C. Jones
Greenhouse gases feature in many courses in applied chemistry as well as in courses on environmental science, atmospheric chemistry, and so on. We hear a great deal about such matters from the media. A more classical topic which first-year chemistry students will learn about in the physical chemistry component of their program is the black body concept and the StefanBoltzmann law. Recently in teaching about greenhouse gases to MSc students I have thought of a link between the topical and classical matters that is pedagogically interesting and might be of value to others teaching in this subject area.
Jones, J. C. J. Chem. Educ. 2005, 82, 837.
Atmospheric Chemistry |
Gases
Analysis of Natural Buffer Systems and the Impact of Acid Rain. An Environmental Project for First-Year Chemistry Students  David C. Powers, Andrew T. Higgs, Matt L. Obley, Phyllis A. Leber, Kenneth R. Hess, and Claude H. Yoder
The purpose of this project is to investigate the basic principles involved in acidbase buffer systems within the context of an environmental issue. It is designed for use in an introductory chemistry course. The students will learn about acidbase interactions and examine how a buffer system composed of a weak acid and its conjugate base can neutralize large quantities of strong acid while resisting drastic change in the pH of the system. Students will also analyze experimentally the various components of the most commonly occurring natural buffer system.
Powers, David C.; Higgs, Andrew T.; Obley, Matt L.; Leber, Phyllis A.; Hess, Kenneth R.; Yoder, Claude H. J. Chem. Educ. 2005, 82, 274.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium
The Effect of Ionic Strength on the Solubility of an Electrolyte  Joan D. Willey
The theory of activity versus concentration is important in industrial, environmental, and biochemistry. The increase in solubility of an electrolyte in a solution of a second electrolyte with no common ions compared with pure water is not an easy concept to grasp because it seems to be counterintuitive. The simple experiment described here illustrates this principle visually and dramatically. Students attempt to dissolve CaSO42H2O (gypsum) in pure water and in 0.25 M NaCl.
Willey, Joan D. J. Chem. Educ. 2004, 81, 1644.
Aqueous Solution Chemistry |
Quantitative Analysis |
Water / Water Chemistry |
Solutions / Solvents
Water in the Atmosphere  Joel M. Kauffman
None of eight college-level general chemistry texts gave a mean value for water in the atmosphere, despite its being the third most prevalent constituent at about 1.5% by mass as vapor and about 2% if clouds and ice crystals are included. The importance of water as a greenhouse gas was omitted or marginalized by five of the eight texts. An infrared spectrum of humid air was determined to demonstrate that water vapor, because of its higher concentration, was more absorptive than carbon dioxide. The cooling effect of clouds, or other influences on the Earth's albedo, were not mentioned in most of the texts. These pervasive errors should be corrected in new or future editions of textbooks.
Kauffman, Joel M. J. Chem. Educ. 2004, 81, 1229.
Atmospheric Chemistry |
Gases |
Green Chemistry |
IR Spectroscopy
Mass Spectrometry for the Masses  Jared D. Persinger, Geoffrey C. Hoops, and Michael J. Samide
In this article, we describe an experiment for an introductory chemistry course that incorporates the use of mass spectrometry for sample analysis. Several different air samples are collected that represent various chemical processes, and the composition of the air sample is predicted on the basis of known chemical principles. A gas chromatograph-mass spectrometer is used to analyze these samples, and the relative quantities of nitrogen, oxygen, carbon dioxide, water, and argon are calculated. On the basis of the data, the hypothesized sample composition is validated.
Persinger, Jared D.; Hoops, Geoffrey C.; Samide, Michael J. J. Chem. Educ. 2004, 81, 1169.
Mass Spectrometry |
Atmospheric Chemistry |
Green Chemistry |
Nonmajor Courses |
Oxidation / Reduction |
Photosynthesis |
Gases
National Chemistry Week 2003: Earth's Atmosphere and Beyond. JCE Resources for Chemistry and the Atmosphere  Erica K. Jacobsen
This annotated bibliography collects the best that past issues of the Journal of Chemical Education have to offer for use with this year's National Chemistry Week theme: Earth's Atmosphere and Beyond. Each article has been characterized as a demonstration, experiment, activity, informational, or software/video item.
Jacobsen, Erica K. J. Chem. Educ. 2003, 80, 1106.
Atmospheric Chemistry |
Applications of Chemistry
A Concept-Based Environmental Project for the First-Year Laboratory: Remediation of Barium-Contaminated Soil by In Situ Immobilization  Heather D. Harle, Phyllis A. Leber, Kenneth R. Hess, and Claude H. Yoder
Simulating the detection and remediation of lead-contaminated soil using barium.
Harle, Heather D.; Leber, Phyllis A.; Hess, Kenneth R.; Yoder, Claude H. J. Chem. Educ. 2003, 80, 561.
Synthesis |
Stoichiometry |
Precipitation / Solubility |
Qualitative Analysis |
Quantitative Analysis |
Metals |
Aqueous Solution Chemistry |
Gravimetric Analysis |
Applications of Chemistry
The Analysis of Seawater: A Laboratory-Centered Learning Project in General Chemistry  Jodye I. Selco, Julian L. Roberts, Jr., and Daniel B. Wacks
Experiment designed to introduce students to qualitative and quantitative analysis methods (gravimetric analysis, potentiometric titration, ion-selective electrodes, and atomic absorption and atomic emission spectroscopy) in the context of an overall analysis of an environmental sample.
Selco, Jodye I.; Roberts, Julian L., Jr.; Wacks, Daniel B. J. Chem. Educ. 2003, 80, 54.
Aqueous Solution Chemistry |
Instrumental Methods |
Qualitative Analysis |
Quantitative Analysis |
Water / Water Chemistry |
Gravimetric Analysis |
Titration / Volumetric Analysis |
Ion Selective Electrodes |
Atomic Spectroscopy |
Potentiometry
A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide  Lisa M. Goss
Demonstration of the wet deposition of sulfur dioxide in the atmosphere.
Goss, Lisa M. J. Chem. Educ. 2003, 80, 39.
Acids / Bases |
Atmospheric Chemistry
Effects of Changing Climate on Weather and Human Activities (by Kevin E. Trenberth, Kathleen Miller, Linda Mearns, and Steven Rhodes)  Evan T. Williams
A short supplement focussed on the effects of changing climate on weather and human activities.
Williams, Evan T. J. Chem. Educ. 2002, 79, 433.
Atmospheric Chemistry |
Nonmajor Courses |
Applications of Chemistry
Stratospheric Ozone Depletion (by Ann M. Middlebrook and Margaret A. Tolbert)  Evan T. Williams
A short supplement focussed on stratospheric ozone depletion.
Williams, Evan T. J. Chem. Educ. 2002, 79, 433.
Atmospheric Chemistry |
Nonmajor Courses |
Applications of Chemistry
Naturally Dangerous: Surprising Facts about Food, Health, and the Environment (by James P. Collman)   Harold H. Harris
Chemist's perspective on the topics of food, vitamins and minerals, herbal remedies, cancer and the environment, global warming, acid rain, ozone, and radiation.
Harris, Harold H. J. Chem. Educ. 2002, 79, 35.
Nonmajor Courses |
Consumer Chemistry |
Food Science |
Atmospheric Chemistry |
Nuclear / Radiochemistry |
Vitamins |
Applications of Chemistry
Identifying Deficiencies in the Environmental Chemistry Educational Literature  Thi Hoa Tran, Stephen W. Bigger, Tony Kruger, John D. Orbell, Saman Buddhadasa, and Sebastian Barone
Study of chemistry textbooks and literature for materials relating to environmental chemistry, including water, air , and soil; and degree of integration of four traditional areas of chemistry (analytical, physical, inorganic, and organic) into environmental chemistry laboratory experiments.
Tran, Thi Hoa; Bigger, Stephen W.; Kruger, Tony; Orbell, John D.; Buddhadasa, Saman; Barone, Sebastian. J. Chem. Educ. 2001, 78, 1693.
Agricultural Chemistry |
Learning Theories |
Atmospheric Chemistry
Cigarette Smoke Analysis Using an Inexpensive Gas-Phase IR Cell  N. Garizi, A. Macias, T. Furch, R. Fan, P. Wagenknecht, and K. A. Singmaster
A PVC gas cell used to collect and analyze cigarette smoke and car exhaust through IR spectroscopy.
Garizi, N.; Macias, A.; Furch, T.; Fan, R.; Wagenknecht, P.; Singmaster, K. A. J. Chem. Educ. 2001, 78, 1665.
Atmospheric Chemistry |
IR Spectroscopy |
Fourier Transform Techniques |
Laboratory Equipment / Apparatus |
Qualitative Analysis
A Discovery-Based Experiment Illustrating How Iron Metal Is Used to Remediate Contaminated Groundwater  Barbara A. Balko and Paul G. Tratnyek
Procedure in which students investigate the chemistry of iron-permeable reactive barriers and their application to the remediation of contaminated groundwater.
Balko, Barbara A.; Tratnyek, Paul G. J. Chem. Educ. 2001, 78, 1661.
Kinetics |
Oxidation / Reduction |
Water / Water Chemistry |
Metals |
Applications of Chemistry |
Aqueous Solution Chemistry
SolEq: Solution Equilibria, Principles and Applications, Release 1
by SolEq Project Team: L. D. Pettit, K. J. Powell, and R. W. Ramette

  Marina C. Koether
29 tutorials with simulation, calculations, and graphs, on solution equilibria.
Koether, Marina C. J. Chem. Educ. 2000, 77, 1414.
Equilibrium |
Solutions / Solvents |
Titration / Volumetric Analysis

Environmental Chemistry Using Ultrasound  Belinda K. Wilmer, Edward Poziomek, and Grazyna E. Orzechowska
In this demonstration, we describe a simple method for presenting the usefulness of sonication in environmental chemistry. When an aqueous solution of carbon tetrachloride is sonicated, it degrades to produce HCl and HOCl. These products cause a reduction of pH, which can be observed visually with a pH indicator.
Wilmer, Belinda K.; Poziomek, Edward; Orzechowska, Grazyna E. J. Chem. Educ. 1999, 76, 1657.
Acids / Bases |
Aqueous Solution Chemistry |
pH
Correction to The Bobbing Bird: Correction to J. Chem. Educ. 1996, 73, 355  H. D. Gesser
Difficulties in improving safety of original demonstration.
Gesser, Hyman D. J. Chem. Educ. 1999, 76, 757.
Atmospheric Chemistry
Advertising in this Issue  
Caution when burning hydrogen / oxygen mixtures.
J. Chem. Educ. 1999, 76, 757.
Atmospheric Chemistry
The Chemical Adventures of Sherlock Holmes: The Death Puzzle at 221B Baker Street  Thomas R. Rybolt and Thomas G. Waddell
A chemical mystery featuring Sherlock Holmes and Dr. Watson.
Rybolt, Thomas R.; Waddell, Thomas G. J. Chem. Educ. 1999, 76, 489.
Enrichment / Review Materials |
Aqueous Solution Chemistry |
Medicinal Chemistry |
Qualitative Analysis
Spring Shock!: Impact of Spring Snowmelt on Lakes and Streams  Judith A. Halstead
This activity uses frozen vinegar to demonstrate that what melts first forms a liquid more concentrated in acetic acid than normal vinegar. As melting continues, the concentration of acetic acid decreases and the pH goes up.
Judith A. Halstead. J. Chem. Educ. 1998, 75, 400A.
Acids / Bases |
Water / Water Chemistry
Identifying Bottled Water: A Problem-Solving Exercise in Chemical Identification  Richard L. Myers
Students are challenged to identify water samples using the known chemical analyses of bottled waters. Several common water quality measurements such as hardness, alkalinity, and ion analysis can be used by students to identify the unknown water. This exercise develops problem-solving skills as students become familiar with basic lab techniques, quality control, data interpretation, and standard methods.
Myers, Richard L. J. Chem. Educ. 1998, 75, 1585.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Qualitative Analysis |
Consumer Chemistry
Thermal Physics (and Some Chemistry) of the Atmosphere  Stephen K. Lower
An exploration of how the temperature of the atmosphere varies with altitude can serve as a useful means of illustrating some important principles relating to the behavior of gases and to the absorption and transformation of radiant energy.
Lower, Stephen K. J. Chem. Educ. 1998, 75, 837.
Atmospheric Chemistry |
Gases
Saving Your Students' Skin. Undergraduate Experiments that Probe UV Protection by Sunscreens and Sunglasses  James R. Abney and Bethe A. Scalettar
This article describes absorption spectroscopy experiments that illustrate the mechanism of action of sunscreens and sunglasses and that highlight the differences between different products. The experiments are well suited to incorporation into an undergraduate science laboratory and will expose students to absorption phenomena in a familiar context with substantial environmental and medical relevance.
Abney, James R.; Scalettar, Bethe A. J. Chem. Educ. 1998, 75, 757.
Photochemistry |
UV-Vis Spectroscopy |
Atmospheric Chemistry |
Applications of Chemistry |
Spectroscopy
Photocatalytic Degradation of a Gaseous Organic Pollutant  Jimmy C. Yu and Linda Y. L. Chan
A simple and effective method to demonstrate the phenomenon of photocatalytic degradation of a gaseous organic pollutant was developed. Titanium dioxide (anatase) was used as the photocatalyst, and sunlight was found to be an effective light source for the activation of TiO2. The organic pollutant degrade in this demonstration was a common indoor air pollutant, dichloromethane.
Yu, Jimmy C.; Chan, Linda Y. L. J. Chem. Educ. 1998, 75, 750.
Catalysis |
Photochemistry |
Atmospheric Chemistry |
Applications of Chemistry
Acid Rain Demonstration: The Formation of Nitrogen Oxides as a By-Product of High-Temperature Flames in Connection with Internal Combustion Engines  Jerry A. Driscoll
This demonstration illustrates the formation of nitrogen oxides resulting from a high temperature flame.
Driscoll, Jerry A. J. Chem. Educ. 1997, 74, 1424.
Equilibrium |
Learning Theories |
Water / Water Chemistry |
Oxidation / Reduction
Chemical Behavior  Paul G. Jasien
In order to increase student understanding of the seemingly confusing behavior of chemical substances involved in environmental chemistry, an analogy between chemical and human behavior is presented. The analogy focuses on how the same individual can behave differently due to his/her social surroundings.
Jasien, Paul G. J. Chem. Educ. 1997, 74, 943.
Molecular Properties / Structure |
Nonmajor Courses |
Consumer Chemistry |
Atmospheric Chemistry
The Chemistry of Paper Preservation: Part 4. Alkaline Paper  Henry A. Carter
The use of alkaline paper can minimize the problem of acidity for new papers. This study focuses on the chemistry involved in the sizing of both acid and alkaline papers and the types of fillers used. The advantages and potential problems in alkaline paper making are also discussed.
Carter, Henry A. J. Chem. Educ. 1997, 74, 508.
Acids / Bases |
Industrial Chemistry |
Applications of Chemistry
A Simple and Low-Cost Air Sampler  Sashi Saxena Ratna and Pramrod Upadhyay
In this article, an air sampler kit is presented that can be assembled from locally available household materials. The reliability of the sampler kit is also established.
Ratna, Shashi Saxena; Upadhyay, Pramod. J. Chem. Educ. 1996, 73, 787.
Atmospheric Chemistry |
Laboratory Equipment / Apparatus |
Quantitative Analysis
The Environmental Chemistry of Trace Atmospheric Gases  William C. Trogler
Information regarding the composition of trace gases in the Earth's atmosphere, changes in these amounts, their sources, and potential future impact on the environment.
Trogler, William C. J. Chem. Educ. 1995, 72, 973.
Gases |
Atmospheric Chemistry
Introducing Atmospheric Reactions: A Systematic Approach for Students  Baird, N. Colin
Outline of the dominant reactions that occur in air, particularly with regard to atmospheric pollutants.
Baird, N. Colin J. Chem. Educ. 1995, 72, 153.
Photochemistry |
Free Radicals |
Atmospheric Chemistry
Checking Trace Nitrate in Water and Soil Using an Amateur Scientist's Measurement Guide  Baker, Roger C., Jr.
Procedures and apparatus (photometer) for measuring concentrations of nitrates in water and soil using common equipment and materials; includes data and analysis.
Baker, Roger C., Jr. J. Chem. Educ. 1995, 72, 57.
Aqueous Solution Chemistry |
Water / Water Chemistry |
Agricultural Chemistry
Not So Late Night Chemistry with USD  Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R.
Through the program, college students enhance their knowledge and expertise on a chemical topic and gain experience in scientific presentations. They also serve as role models to the high school students who can relate to college students more easily than the chemistry faculty members and their high school students.
Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R. J. Chem. Educ. 1994, 71, 929.
Forensic Chemistry |
Polymerization |
Electrochemistry |
Isotopes |
Acids / Bases
Inventory Control: Sampling and Analyzing Air Pollution: An Apparatus Suitable for Use in Schools  Rockwell, Dean M.; Hansen, Tony
Two variations of an air sampler and analyzer that are inexpensive, easy to construct, and highly accurate.
Rockwell, Dean M.; Hansen, Tony J. Chem. Educ. 1994, 71, 318.
Atmospheric Chemistry |
Laboratory Equipment / Apparatus |
Quantitative Analysis
The Erosion of Carbonate Stone by Acid Rain: Laboratory and Field Investigations  Baedecker, Philip A.; Reddy, Michael M.
Describes a laboratory experiment on the effects of acidic deposition on carbonate stone erosion. The purpose is to answer questions concerning the effects of hydrogen ion deposition on stone erosion processes that are difficult to resolve in field experiments alone.
Baedecker, Philip A.; Reddy, Michael M. J. Chem. Educ. 1993, 70, 104.
Acids / Bases |
Green Chemistry
Microscale experiments: Dissolved oxygen and chloride determination in water  Crosson, Mary; Gibb, Reen
Determining the dissolved oxygen and chloride content of water samples through titrations.
Crosson, Mary; Gibb, Reen J. Chem. Educ. 1992, 69, 830.
Microscale Lab |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Titration / Volumetric Analysis
Simple soda bottle solubility and equilibria  Snyder, Cheryl A.; Snyder, Dudley C.
Using a bottle of selzter water and bromocresol green to demonstrate gas-liquid solubility (carbon dioxide in water).
Snyder, Cheryl A.; Snyder, Dudley C. J. Chem. Educ. 1992, 69, 573.
Solutions / Solvents |
Precipitation / Solubility |
Equilibrium |
Gases |
Liquids |
Aqueous Solution Chemistry |
Water / Water Chemistry
The chemical logic of life and the earth's biosphere: A simple, one-diagram outline  Ochiai, Ei-Ichiro
This diagram is intended to give a compact overall picture of the chemical logic of life and of the earth's biosphere.
Ochiai, Ei-Ichiro J. Chem. Educ. 1992, 69, 356.
Acids / Bases |
Oxidation / Reduction
Acid rain investigations   Epp, Dianne N.; Curtright, Robert
A series of reactions that can be carried out to demonstrate the effects of acid rain.
Epp, Dianne N.; Curtright, Robert J. Chem. Educ. 1991, 68, 1034.
Acids / Bases |
Green Chemistry
Demonstration properties of sulfur dioxide   Brouwer, H.
Demonstrations of properties of sulfur dioxide are timely, given current debates between Canada and the United States regarding acid rain.
Brouwer, H. J. Chem. Educ. 1991, 68, 417.
Acids / Bases |
Green Chemistry |
pH
Acid rain experiment and construction of a simple turbidity meter  Betterton, Eric A.
Construction of a simple turbidity meter in order to furnish more atmospheric chemistry experiments in the freshman and sophomore level chemistry lab.
Betterton, Eric A. J. Chem. Educ. 1991, 68, 254.
Atmospheric Chemistry |
Laboratory Equipment / Apparatus |
Green Chemistry
Bromothymol surprise  Maier, Linda L.
Dropping a tablet of Alka Seltzer into a bromothymol blue solution.
Maier, Linda L. J. Chem. Educ. 1990, 67, 963.
Acids / Bases |
Dyes / Pigments |
Aqueous Solution Chemistry |
Water / Water Chemistry
The absorption of UV light by ozone   Koubek, Edward
Using a low-pressure mercury vapor UV lamp and a recently laundered white cotton sheet as a background, one can produce a shadowgraph of ozone emerging from an ozonator.
Koubek, Edward J. Chem. Educ. 1989, 66, 338.
Atmospheric Chemistry
Demonstrating the chemistry of air pollution  Hollenberg, J. Leland; Stephens, Edgar R.; Pitts, James N., Jr.
Demonstrations regarding the three essential conditions or ingredients for the formation of photochemical smog and involving NO, NO2, unsaturated hydrocarbons, and O3.
Hollenberg, J. Leland; Stephens, Edgar R.; Pitts, James N., Jr. J. Chem. Educ. 1987, 64, 893.
Atmospheric Chemistry |
Photochemistry
A convenient, low-cost method for determining sulfate in acid rain  Johns, Nicholas; Longstaff, Stephen J.
Adapting the thoron colorimetric method for determining low sulfate concentrations quickly, simply, and accurately.
Johns, Nicholas; Longstaff, Stephen J. J. Chem. Educ. 1987, 64, 449.
Acids / Bases |
Atmospheric Chemistry |
Quantitative Analysis
Acid rain effects on stone monuments  Charola, A. Elena
What is acid rain? Which stones are used to make mountains? How are the stones affected by acid rain?
Charola, A. Elena J. Chem. Educ. 1987, 64, 436.
Acids / Bases |
Applications of Chemistry |
Atmospheric Chemistry |
Geochemistry
Acid rain analysis by standard addition titration  Ophardt, Charles E.
A simple standard addition titration method for determining the acidity of a rain or snow sample.
Ophardt, Charles E. J. Chem. Educ. 1985, 62, 257.
Titration / Volumetric Analysis |
Atmospheric Chemistry |
Acids / Bases |
Qualitative Analysis
Why isn't my rain as acidic as yours?  Zajicek, O. T.
Calculating of pH values of acid rain and comparisons to uncontaminated samples.
Zajicek, O. T. J. Chem. Educ. 1985, 62, 158.
Acids / Bases |
Atmospheric Chemistry |
pH |
Chemometrics
Modeling hypersaline lake "turn-over"  Sprague, Gary
Modeling saline lake inversions with a saturated salt solution in a beaker.
Sprague, Gary J. Chem. Educ. 1984, 61, 956.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Solutions / Solvents
The chemical oceanographer   Abel, Robert B.
Oceanography holds fascinating subject matter for students learning chemistry.
Abel, Robert B. J. Chem. Educ. 1983, 60, 221.
Water / Water Chemistry |
Food Science |
Geochemistry |
Atmospheric Chemistry |
Drugs / Pharmaceuticals |
Applications of Chemistry
Soil analysis for high school chemistry students  Eisenmann, Mary A.
Students examine the solubility of nitrate ions, the insolubility of iron hydroxide and iron carbonate, and the reaction between acid and carbonates.
Eisenmann, Mary A. J. Chem. Educ. 1980, 57, 897.
Agricultural Chemistry |
Plant Chemistry |
Applications of Chemistry |
Geochemistry |
Acids / Bases |
pH |
Oxidation / Reduction |
Precipitation / Solubility |
Aqueous Solution Chemistry
Gold mine!  Taylor, Thomas E.
Determining the ppm of gold in ocean water.
Taylor, Thomas E. J. Chem. Educ. 1980, 57, 665.
Aqueous Solution Chemistry
Gasoline vapor: An invisible pollutant  Stephens, Edgar R.
An apparatus and procedure to demonstrate the substantial contribution vaporized gasoline makes to hydrocarbon pollution.
Stephens, Edgar R. J. Chem. Educ. 1977, 54, 682.
Physical Properties |
Gases |
Atmospheric Chemistry
Questions [and] Answers  Campbell, J. A.
330-333. Four questions and their answers; includes comments made by readers on earlier questions 130, 153, 154, 171, 172, 181.
Campbell, J. A. J. Chem. Educ. 1977, 54, 678.
Enrichment / Review Materials |
Atmospheric Chemistry |
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Metals |
pH
Ultraviolet absorption of ozone  Driscoll, Jerry A.
A demonstration of the absorption of ultraviolet radiation by ozone.
Driscoll, Jerry A. J. Chem. Educ. 1977, 54, 675.
Gases |
Atmospheric Chemistry
Questions [and] Answers  Campbell, J. A.
315-322. Eight questions on subjects related to environmental chemistry and their answers.
Campbell, J. A. J. Chem. Educ. 1977, 54, 498.
Enrichment / Review Materials |
Applications of Chemistry |
Water / Water Chemistry |
Atmospheric Chemistry
Great spray can debate  Bassow, Herb
A curriculum scenario that takes the problems raised by the technological, economic, and political contexts of the fluorocarbon controversy as its point of focus.
Bassow, Herb J. Chem. Educ. 1977, 54, 371.
Atmospheric Chemistry |
Gases |
Enrichment / Review Materials |
Applications of Chemistry
Questions [and] Answers  Campbell, J. A.
303-308. Six practical, environmental chemistry application questions and their answers. Q303 submitted by Jerry Ray Dias.
Campbell, J. A. J. Chem. Educ. 1977, 54, 369.
Enrichment / Review Materials |
Metals |
Toxicology |
Coordination Compounds |
Membranes |
Aqueous Solution Chemistry |
Atomic Properties / Structure
Questions [and] Answers  Campbell, J. A.
290-297. Eight questions regarding practical applications of chemistry, primarily in the medical field, and their answers.
Campbell, J. A. J. Chem. Educ. 1977, 54, 247.
Toxicology |
Equilibrium |
Metabolism |
Medicinal Chemistry |
Applications of Chemistry |
Enrichment / Review Materials
Chemist's view of oceanography  Cutshall, Norman H.
The structure of oceanography, chemists in oceanography, chemical analysis in oceanography, chemical oceanography research, and chemical oceanographers in marine pollution studies.
Cutshall, Norman H. J. Chem. Educ. 1977, 54, 162.
Applications of Chemistry |
Aqueous Solution Chemistry |
Water / Water Chemistry
Nitric acid in rain water  Gleason, Geoffrey I.
This trace analysis experiment is based on the conversion of nitrate to nitrite using a cadmium amalgam reductor column.
Gleason, Geoffrey I. J. Chem. Educ. 1973, 50, 718.
Acids / Bases |
Water / Water Chemistry |
Atmospheric Chemistry
Questions [and] Answers  Campbell, J. A.
Four questions requiring an application of chemical principles.
Campbell, J. A. J. Chem. Educ. 1973, 50, 498.
Enrichment / Review Materials |
Acids / Bases
The chemistry of pollution - An experimental course  Frank, David L.
Briefly outlines the goals and topics of a course entitled "Chemistry of Air Pollution."
Frank, David L. J. Chem. Educ. 1973, 50, 209.
Atmospheric Chemistry |
Water / Water Chemistry
Questions [and] Answers  Campbell, J. A.
Eight questions regarding the application of chemistry and their solutions.
Campbell, J. A. J. Chem. Educ. 1973, 50, 62.
Enrichment / Review Materials |
Applications of Chemistry |
Atmospheric Chemistry
The determination of dissolved oxygen by the Winkler method. A student laboratory experiment  McCormick, Patrick G.
This method is based on the reaction between oxygen and a suspension of manganese(II) hydroxide in a strongly alkaline solution.
McCormick, Patrick G. J. Chem. Educ. 1972, 49, 839.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Gases |
Quantitative Analysis |
Titration / Volumetric Analysis
Radiometric analysis of ammonia in water  Mehra, M. C.
In this experiment, the silver concentration in aqueous solution is determined radiometrically using silver-110 as the radiotracer.
Mehra, M. C. J. Chem. Educ. 1972, 49, 837.
Water / Water Chemistry |
Nuclear / Radiochemistry |
Isotopes |
Aqueous Solution Chemistry |
Quantitative Analysis
Water analysis experiment  Anderlick, Barbara
Analyzing various water samples for the presence of a variety of ions.
Anderlick, Barbara J. Chem. Educ. 1972, 49, 749.
Water / Water Chemistry |
Qualitative Analysis |
Aqueous Solution Chemistry |
Metals
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 707.
Enrichment / Review Materials |
Applications of Chemistry |
Atmospheric Chemistry |
Astrochemistry
Student flowmeters and an air pollution experiment  Kohn, Harold W.
Using glass wool as an absorbent for atmospheric contaminants and three simple devices for measuring flow rates of gases.
Kohn, Harold W. J. Chem. Educ. 1972, 49, 643.
Atmospheric Chemistry |
Gases |
Laboratory Equipment / Apparatus
Questions [and] Answers  Campbell, J. A.
Eight questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 624.
Enrichment / Review Materials |
Applications of Chemistry |
Atmospheric Chemistry |
Gases
Air pollution measurements in the freshman laboratory  Suplinkas, Raymond J.
Summarizes the equipment and procedures used to measure air pollution (NO, NO2, and O3) in a freshman chemistry laboratory.
Suplinkas, Raymond J. J. Chem. Educ. 1972, 49, 24.
Atmospheric Chemistry |
Quantitative Analysis
An introductory experiment on phosphates in detergents  Mohrig, Jerry R.
Examines the phosphate controversy, the roles of phosphates in detergents, the chemistry of phosphates and their colorimetric determination, and presents an experiment in which the amount of phosphate is measured using two different analytical methods.
Mohrig, Jerry R. J. Chem. Educ. 1972, 49, 15.
Aqueous Solution Chemistry |
Water / Water Chemistry |
Consumer Chemistry |
Quantitative Analysis |
Applications of Chemistry
Beginning chemistry can be relevant  Corwin, James F.
The continuing criticism offered by students of the science that the present day courses are not relevant to contemporary problems. This can be answered in part by a laboratory program based on environmental problems.
Corwin, James F. J. Chem. Educ. 1971, 48, 522.
Acids / Bases |
Solutions / Solvents |
Student-Centered Learning
Understanding a culprit before eliminating it. An application of Lewis acid-base principles to atmospheric SO2 as a pollutant  Brasted, Robert C.
The SO2 molecule offers ample opportunities for teaching practical chemistry. [Debut of first run. This feature reappeared in 1986.]
Brasted, Robert C. J. Chem. Educ. 1970, 47, 447.
Acids / Bases |
Lewis Acids / Bases |
Atmospheric Chemistry |
Mechanisms of Reactions |
Reactions |
Applications of Chemistry |
Lewis Structures |
Molecular Properties / Structure
Environmental chemistry in the classroom  Day, Jean W.
The environmental sciences is an especially good vehicle for relating chemistry to other disciplines in courses for nonscientists.
Day, Jean W. J. Chem. Educ. 1970, 47, 260.
Nonmajor Courses |
Atmospheric Chemistry |
Applications of Chemistry
Stable isotopes of the atmosphere  Eck, C. F.
This article briefly presents the composition of air, the discovery of isotopes, their concentration in air, and reviews their current enrichment status.
Eck, C. F. J. Chem. Educ. 1969, 46, 706.
Atmospheric Chemistry |
Isotopes |
Nuclear / Radiochemistry
Calcium carbonate equilibria in the oceans - ion pair formation  Morton, Stephen D.; Lee, G. Fred
Discusses some of the problems encountered in studying the chemistry of lakes and oceans, focussing on the solubility of calcium carbonate in marine environments.
Morton, Stephen D.; Lee, G. Fred J. Chem. Educ. 1968, 45, 513.
Aqueous Solution Chemistry |
Water / Water Chemistry |
Precipitation / Solubility |
Qualitative Analysis
Calcium carbonate equilibria in lakes  Morton, Stephen D.; Lee, G. Fred
Discusses some of the problems encountered in studying the chemistry of lakes and oceans, focussing on the solubility of calcium carbonate in fresh water lakes.
Morton, Stephen D.; Lee, G. Fred J. Chem. Educ. 1968, 45, 511.
Aqueous Solution Chemistry |
Water / Water Chemistry |
Precipitation / Solubility |
Equilibrium
Radioisotopes on your rooftop  Lockhart, Luther, B., Jr.
The collection, recovery, and measurement of radioactive materials from atomic testing can be done through the use of relatively simple procedures and is a good exercise in tracer chemistry.
Lockhart, Luther, B., Jr. J. Chem. Educ. 1957, 34, 602.
Nuclear / Radiochemistry |
Atmospheric Chemistry |
Isotopes