Journal Articles: 14 results
"Concept Learning versus Problem Solving": Does Particle Motion Have an Effect?  Michael J. Sanger, Eddie Campbell, Jeremy Felker, and Charles Spencer
210 students were asked to answer a static, particulate-level, multiple-choice question concerning gas properties. Then they viewed an animated version of the question and answered the multiple-choice question again. The distribution of responses changed significantly after students viewed the animation.
Sanger, Michael J.; Campbell, Eddie; Felker, Jeremy; Spencer, Charles. J. Chem. Educ. 2007, 84, 875.
Gases |
Kinetic-Molecular Theory |
Qualitative Analysis |
Quantitative Analysis |
Phases / Phase Transitions / Diagrams
Why Does a Helium-Filled Balloon "Rise"?  Richard W. Ramette
The article is a lighthearted, conversational exploration of the microscopic basis for Archimedes¬Ě principle. The principle is discussed in terms of molecular collisions and density gradients in a gravitational field.
Ramette, Richard W. J. Chem. Educ. 2003, 80, 1149.
Atmospheric Chemistry |
Gases |
Kinetic-Molecular Theory |
Physical Properties
Loschmidt and the Discovery of the Small  Porterfield, William W.; Kruse, Walter
Translation of J. Loschmidt's "On the Size of Air Molecules", the earliest determination from experimental data of the size of an atom (with notes).
Porterfield, William W.; Kruse, Walter J. Chem. Educ. 1995, 72, 870.
Enrichment / Review Materials |
Kinetic-Molecular Theory
The "Collisions Cube" Molecular Dynamics Simulator  John J. Nash and Paul E. Smith
Design and applications for a large, three-dimensional atomic/molecular motion/dynamics simulator using forced-air blowers and ping-pong balls.
Nash, John J.; Smith, Paul E. J. Chem. Educ. 1995, 72, 805.
Laboratory Equipment / Apparatus |
Kinetic-Molecular Theory
Molecular dynamics simulator  Matthews, G. Peter, Heald, Emerson F.
A review of a computer program that provides a display of molecular motion in a solid, liquid, or gas.
Matthews, G. Peter, Heald, Emerson F. J. Chem. Educ. 1993, 70, 387.
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams
The kinetic molecular theory and the weighing of gas samples  Brenner, Henry C.
How is it possible to weigh gas samples since the molecules are constantly moving around and not always in contact with the floor of the container?
Brenner, Henry C. J. Chem. Educ. 1992, 69, 558.
Kinetic-Molecular Theory |
Gases |
Physical Properties
Does a one-molecule gas obey Boyle's law?  Rhodes, Gail
Because the kinetic molecular theory provides a plausible explanation for the lawful behavior of gases, it should be treated in enough depth to show students that the theory accounts for all of the important aspects of ideal gas behavior.
Rhodes, Gail J. Chem. Educ. 1992, 69, 16.
Gases |
Kinetic-Molecular Theory
The collision theory and an American tradition  Krug, Lee A.
Comparing baseball to the three requirements of the collision theory of molecules.
Krug, Lee A. J. Chem. Educ. 1987, 64, 1000.
Kinetic-Molecular Theory |
A new road to reactions. Part 1  de Vos, Wobbe; Verdonk, Adri H.
Suggestions on how to carry out discovery learning as a teaching method in chemistry; recommends several specific reactions for use in activities.
de Vos, Wobbe; Verdonk, Adri H. J. Chem. Educ. 1985, 62, 238.
Reactions |
Kinetic-Molecular Theory
A gas kinetic explanation of simple thermodynamic processes  Waite, Boyd A.
Proposes a simplified, semi-quantitative description of heat, work, and internal energy from the viewpoint of gas kinetic theory; both heat and work should not be considered as forms of energy but rather as different mechanisms by which internal energy is transferred from system to surroundings.
Waite, Boyd A. J. Chem. Educ. 1985, 62, 224.
Gases |
Kinetic-Molecular Theory |
Further reflections on heat  Hornack, Frederick M.
Confusion regarding the nature of heat and thermodynamics.
Hornack, Frederick M. J. Chem. Educ. 1984, 61, 869.
Kinetic-Molecular Theory |
Thermodynamics |
Calorimetry / Thermochemistry
Fundamental theory of gases liquids, and solids by computer simulation. Use in the introductory course  Empedocles, Philip
The computer simulation of atomic motions presented here allows students to form a better foundation of their chemistry understanding.
Empedocles, Philip J. Chem. Educ. 1974, 51, 593.
Laboratory Computing / Interfacing |
Kinetic-Molecular Theory
Teaching kinetic molecular theory by the factor change method  Koons, Lawrence F.
Develops the "factor change method" for teaching kinetic molecular theory and presents examples of its application.
Koons, Lawrence F. J. Chem. Educ. 1967, 44, 288.
Kinetic-Molecular Theory |
Some aspects of chemical kinetics for elementary chemistry  Benson, Sidney W.
The author suggests greater efforts to address the issue of kinetics and reaction mechanisms in introductory chemistry.
Benson, Sidney W. J. Chem. Educ. 1962, 39, 321.
Kinetic-Molecular Theory |
Gases |
Kinetics |
Mechanisms of Reactions |
Descriptive Chemistry